Estimation of Parameters Where Dependent
Observations Are Related by Equality

Constraints

Pirt’s model for microbial growth and product formation are reparameterized
to obtain multiresponse models with common parameters. The dependent variables
in the models are related through the available electron and carbon balance con-
straints, Covariance adjustment is used to reduce the growth model to a unit variate
linear model with covariates. Therefore, standard multiple regression programs
can be used to obtain combined point and interval estimates of true biomass en-
ergetic yield, true product yield and maintenance coefficient. This approach may
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yield “better” estimates than the maximum likelihood approach when an appro-

priately selected subset of covariates is used. Nonlinear estimation procedures are
also considered; these procedures are efficient with few responses; however, as
the number of responses per observation increase, they may require a lot of com-
puting time. For illustration several data from the biochemical engineering liter-

ature are analyzed by the proposed methods.
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SCOPE

Advances in genetic engineering are being applied by mi-
crobiologists, plant scientists and animal scientists to develop
new and improved strains of a wide variety of growing organ-
isms. In most cases, efficient growth is an important objective.
In other cases, product formation efficiency is important. For
each improved strain which is developed, optimum conditions
for growth and product formation are also of interest.

This work is concerned with the application of statistical
methods of parameter estimation, and data consistency analysis
to growth and product formation where the dependent variables
are related by equality constraints. In earlier work, parameter
estimation results with point and interval estimates are reported
by Erickson and Hess (1981), and by Solomon et al. (1981, 1982).
Data consistency analysis and methodology to use all of the
available measurements to obtain maximum likelihood esti-
mates have also been reported previously by Solomon et al.
(1982).

When more than the minimum number of variables are
measured, if measurement error is considered, parameter esti-
mation results depend on which of the measured variables are
selected for use in parameter estimation. Models relating the
response with the common parameters can be put into a type
of multivariate linear model which is a special case of the gen-
eral growth curve model introduced by Putthoff and Roy (1964).
In earlier work (Solomon et al., 1982), this type of model was

used to analyze data obtained from fermentation processes. The
method of analysis was based on results obtained by Khatri
(1966) and Rao (1967). In this paper, using Rao’s (1965, 1966,
1967) ideas of covariance adjustment and following Grizzle and
Allen (1969), this special type of growth curve model can be re-
duced to a unit variate linear model with covariates. Therefore,
standard multiple regression programs can be used to estimate
parameters and to test hypotheses concerning the parameters.
Moreover, the covariance adjustment approach provides ad-
ditional flexibility in weighting by choosing subsets of covar-
iates. An approximately selected subset of covariates may in
some cases yield “better” estimates than using all the covariates.
In this work, the results show that the estimates with shorter
95% confidence intervals are frequently obtained when co-
variate adjustment is used.

Also presented are some nonlinear parameter estimation
techniques using the Hooke and Jeeves (1961) Pattern Search
Technique to estimate parameters by minimization of some
determinant criteria which have been considered previously
by Oner et al. (1983) and Box and Draper (1965). The 95% con-
fidence intervals of the parameters are constructed using the
Smooth Bootstrap method (Efron, 1979, 1981).

The applicability of the linear as opposed to the non-linear
techniques are discussed from a computational point of
view,

CONCLUSION AND SIGNIFICANCE

Application of the available electron and carbon balances and
the associated regularities has unified all the different types of
yields and maintenance coefficients in Eqs. 16-19; more than
one estimate of the yield and maintenance parameters may be
obtained. The statistical methodologies which are presented
allow one to combine the different estimates and has led to
improved point and interval estimates for the true biomass en-
ergetic yield, true product yield and maintenance coeffi-
cients.

The maximum likelihood estimator using all the covariates
is not always the best estimator. In fact including only appro-
priately selected subsets of covariates sometimes yields better
estimators. The “dominant characteristics vector” method is
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also an efficient and simple method for determining useful co-
variates.

The results also show that the parameter estimates are sen-
sitive to the form of the equations. Forms I and II utilized with
the product formation case give results which differ some and
utilization of both forms is desirable because this gives a clear
indication of the dependence of the estimates on the form of the
equations,

The growth curve model is a very general model, It is easily
applied to estimate yields and maintenance parameters asso-
ciated with growth and product formation. The techniques
considered in this article will also be useful to analyze multir-
esponse data from other contexts,
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INTRODUCTION

Aerobic microbial processes as well as other aerobic processes
such as those associated with animal and human growth and nu-
trition may be analyzed using available electron and energetic yield
concepts described by Minkevich and Eroshin (1973), Payne
(1970), and Erickson et al. (1978). Recently, Erickson and Patel
(1981, 1982) utilized these concepts in an examination of energetic
yields and efficiencies of a wide variety of growth processes.

An available electron balance or energy balance based on the
chemical energy in the organic substrate (food) utilized by the
growing organism may be written as

Energy allocated Energy allocated
Energy _ for biomass + Maintenance + for product
Input production energy formation
(1)

Based on the chemical energy in the organic substrate, the energetic
efficiency of growth is (Erickson, 1979)

energy incorporated in the biomass

= 2
Tmax energy allocated for biomass production @)
Similarly, the energetic efficiency of product formation is
max _ __ energy incorporated into products )
max =

energy allocated for product formation

Another form of the energy balance may also be written. Based on
the final products,

Energy _ Energy incorporated + Energy lost

Input into biomass as heat

Energy incorporated
: (4)
into products

or dividing by the energy input
=n+et+§ (5)

where 7 is the biomass energetic yield, ¢ is the fraction of consumed
energy evolved as heat (or the fraction of available electrons
transferred to oxygen), and £, is the product energetic yield.
Equation 1 may be divided by the energy input and written in the
form

1= he, 4 22 6)

Nmax &

where ¢,, is the fraction of input energy evolved as heat because
of maintenance.

The parameters Nmax and £5°* are of considerable commercial
importance, and thus, they are to be estimated. The quantities 7,
€ and &, may be calculated from appropriate measurements. The
quantities, 1, €, and £, depend on growth rate while m,x and £
are assumed to be independent of growth rate. In addition to these
two parameters, a maintenance parameter is also estimated;
however, the form of parameter depends on the species being
considered. For microbial growth, where u is the specific growth
rate, Eq. 6 may be written in the form (Erickson, 1979).

1_1 . m

N Mmax

mo onEp™

where m, = pep, /7 is the rate of consumption of energy for
maintenance per unit of energy in the biomass per hour. In animal
nutrition studies the maintenance energy requirement has been
found to depend on the 0.75 power of the mass of the animal (Er-
ickson and Patel, 1982; Brody, 1945).

Several variables may be measured in microbial growth pro-
cesses. Biomass production, product formation, specific growth
rate, and substrate consumption measurements are required for
direct evaluation of the quantities , 4, and &, in Eq. 7. If oxygen
uptake measurements are also made, the equation (Erickson,
1979).
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1_ X — fmax
€L oy e G (1= 5 ()
7 Vmax g1 &

may be used for parameter estimation where oxygen uptake, bio-
mass production, specific growth rate, and product formation
measurements are required for the direct calculation of ¢/7, u, and
&,/n. When carbon dioxide production measurements are also
made, the equation (Erickson, 1979)

d 1-— ﬁ Nmax m g (1 - % Eglax)
- = —< 4 l+ 9
1 Nmax T &

may be used for parameter estimation where carbon dioxide pro-
duction, biomass production, specific growth rate, and product
formation are required for direct evaluation of d/n, 1, and &, /7.
In Eq. 9, d is the fraction of substrate carbon which is converted
to COg; that is, the microbial growth process may be considered
to follow a chemical balance equation of the form

CH,,O; + aNH;g + bO; = y.CH,0,N,; + zCH,O;N,
+ ¢cH20 + dc02 (10)

where a, b, y., %, ¢ and d are stoichiometric coefficients, CH,,, O;
denotes the organic substrate, CH,0, N, refers to the elemental
composition of the biomass, and CH, OsN, denotes the extracellular
products. In Eq. 9, 75, Y, and y,, are the reductance degrees of
the substrate, biomass, and products, respectively as defined by
Minkevich and Eroshin (1973).

The consistency of the data may be examined using an available
electron balance which is given in Eq. 5 and a carbon balance based
on Eq. 10

Yo+ z+d=10 (11)

where y, is fraction of substrate carbon incorporated into biomass,
% is the fraction utilized in product formation and d is the fraction
evolved as carbon dioxide.

In animal nutrition studies, the concept of specific growth rate
is not widely used and

MeMO'75
Or
where M, is the maintenance coefficient, M is the mass of the

animal and Q7 is the energy in the feed which is metabolized by
the animal per day. The term m,/u in Egs. 7, 8, and 9 becomes

€m _ MM 0.75
n nQr

where nQr is the rate of gain of the animal in energy units. Some
results of using these equations for parameter estimation with an-
imal nutrition data are reported elsewhere by Erickson and Patel
(1981). For microbial growth without any product formation, the
available electron balance and the carbon balance of Egs. 5 and
11 respectively, reduce to

(12)

€m

(13)

n+e=1 (14)

Yy +d=1 (15)
Note that

yc=&n andz=1££p
Yo Yb
Also for this situation, Pirt’s (1965, 1975) model can be written in
the forms (Ferrer and Erickson, 1979).

Lo me (16)
7 Mmax
Qi ==t—+m, 17
Y ,max
_ K
Qo, = Y +m, (18)
plnax
_ M
QCOg = ymax + mp (19)
D
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where f, 9, Ny and m, are as previously defined while Q,, Qo,
and Qco, are respectively the specific rates of organic substrate
consumption, oxygen consumption and carbon dioxide evaluation,
YT Y7* and Y3 are true growth yields based on substrate,
oxygen and carbon dioxide respectively and m,, m, and mp are
maintenance coefficients based on substrate, oxygen and carbon
dioxide respectively.

Recently, Roels (1983) has presented the development of these
models from fundamental principles. The validity of the models
and their individual application in parameter estirnation has been
demonstrated (Pirt, 1975; Roels, 1983; Erickson, 1979; Erickson,
Minkevich and Eroshin, 1979; Oner, Erickson and Yang, 1983;
Erickson and Hess, 1981; Solomon, Erickson and Yang, 1983).

When the growth models presented above are reparameterized,
models relating the responses with the common parameters can
be put into a type of multivariate linear model (model with several
response variables) which is a special case of the general growth
curve model introduced by Putthoff and Roy (1964). Using Rao’s

(1965, 1966, 1967) ideas of covariance adjustment and following’

Grizzle and Allen (1969), this special type of growth curve model
can be reduced to a unit variate linear model (model with one re-
sponse variable), with covariates. Therefore, standard multiple
regression and residual analysis programs can be used to estimate
parameters and to test hypotheses concerning the parameters.

COVARIANCE ADJUSTMENT APPROACH

Suppose that, in an experimental program, N sets of reaction
conditions are run, and at each set of conditions p responses
“(%1,%3,. . .x,) are recorded. Suppose furthermore that we can write
a mathematical model for the ith response at the uth set of reaction
conditions

iy =Ela1_u + 52‘1214 + ...+ graru + €y (20)
i=1l,...p u=1,...,N;

where ¢, is the error in the ith response for the uth run, £ =
(&1, ... ,&,) are the r unknown parametersand @, ( =1,...,r)
are the values of the input variables defining the reaction conditions
for the uth run.

We shall assume that the error vectors €, = (€14,€24, - - - ,€pu)
(u =1, ... N)are independently identically distributed according
to multivariate normal distribution with zero mean vector and
unknown covariance matrix 2.

In matrix notation, we can express Eq. 20 as

X=1{A + E, (21)
where
xil Xy2... XIN
X = x'gl xzzl. .. XoN
Xpl %p2... %XpN

1= <1:l, e 71);111

’

£= (ElaEZ e :Er)rxly

any Gy2... 4N

a1 Q... QGgN
A = - -

arl Gr2... OGN

€11 €12... €IN

€21 €220... €N
E =

€p1 €p2... €N

Hence Eq. 21 is a special case of the general growth curve model
considered by Putthoff and Roy (1964) and applied by Yang et al.
(1982). Note that for each set of reaction conditions, the expected
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values of the responses, x1,,%24,. ... %py, are equal for this
model.

The model described by Eq. 20 or 21 may be reduced to a
standard univariate linear model

y.u = Elalu + £2a2u + ...+ Eram + E.u
by letting

Yu = i T /P
=1

be the arithmetic average of the uth set of responses, However, to
efficiently use all the information contained in the responses
,,,,, Xpu, appropriately selected covariates, Z, are intro-
duced. Let ¥ = X’1(1'1)"? be vector of dimension N and Z =
(Z,,Z5, ... ,Z,_,) = X’B be an Nx(p — 1) matrix where B isa pX(p
— 1) matrix of rank (p — 1) and B’1 = 0. Then, E(Y) = A’ and
E(Z) = 0. The expected value of each of the covariates, Z; is zero
because the covariates are selected such that their values are zero
when x1, = gy = ... = ¥pu. This is the expected result for the
model. Therefore the conditional expectation of Y given Z is
E(Y|Z) = A’E + Za, where atis a vector of (p — 1) unknown re-
gression coefficients. The conditional variance is

02 = (U)W ELY)! - (1)1 EB(B ZB) 1B 2 1(171)!
=@z

Now it is clear that the conditional linear model of ¥ conditional
onZis

Y=At+Za+e (22)

where the elements of the residual vector e are independently and
identically distributed according to a normal distribution with zero
mean and variance equal to 62 Equation (22) which may also be
written in the form

_ T p=1
Yu = jZl fjaju + Zl A2y + €y
= i=

may be used with standard multiple regression methods to estimate
the parameters £; and ;. The estimated values of o; from the
regression analysis determine the weighting associated with each
covariate, Z;.

Since E(Z) = 0, the marginal density of Y is independent of £.
Therefore the maximum likelihood estimate of £ under the con-
ditional model (Eq. 22) which is also the least squares estimate
based on Eq. 22 is the maximum likelihood estimate of £ under the
unconditional model (Eq. 21). Moreover, since the distribution of
the pivotal quantities for making inferences on £ under the con-
ditional model (Eq. 22) are independent of Z, their conditional and
unconditional distributions are the same. Hence the statistical in-
ferences on § based upon the standard linear model theory under
the conditional model (Eq. 22) are also valid for the unconditional
model (Eq. 21).

The maximum likelihood estimate of & can be written as

/= (1S-11) 11’ E-1XA/(AAN)) (23)

where the sample covariance matrix, £ = X[I — A/(AA’)1A]
X’/(N — r), is a pXp matrix which is an unbiased estimate of 2.
Note that the ith row of XA’(AA’)~! is the least squares estimate
of £ based on the linear model for the ith response

Xy = Elalu + 52(12“ + ... 4 E,a,,, + gulu=1,... ,N).

Hence if we replace £ by Z, then any linear function N'£ is the
minimum variance unbiased estimate of \’§ when Z is known. It
can also be shown that (Grizzle and Allen 1969, Eq. 8)

Var($) = (AA)HVZT)THN =7 = 1)/(N =7 = p)
An unbiased estimator for Var(E) is
Var) = (AA) 76N — 1 = 1)/ (N —r = p),
where 42 is the mean square error for fitting the conditional model

(22).
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From Eq. 23, we see that £ is essentially a weighted least squares
estimate weighted inversely by the sample covariance matrix 2.
Rao (1966, 1967) suggested that including only appropriately se-
lected subsets of Zy, . .., Z,— as covariates in model (Eq. 22) may
in some cases yield “better” estimates than including all the Z;’s.
The least squares estimate of £ based on model (Eq. 22) including
only a subset of Z, ... ,Z,-1 is a maximum likelihood estimate
based on ¥ and the selected subjset of the Zs but it is no longer the
maximum likelihood estimate based on X. An unbiased estimate
for the variance of the resulting estimate is given by

var) = (AA) W6 N —r—1)/(N—r—q—1) (24)

where q is the total number of Z; included in model (Eq. 22) and
&2 is the mean square error for fitting the reduced model (Eq.
22).

The measure of “goodness” of the selection may be based on the
generalized variance of £, det [Var(§)). From Eq. 24, we see that
Var(§) depends on the selected Z’s only through 62 and q. Hence
a simple measure of “goodness” of the selection is §2/(N —r — g
— 1). The selection can be determined by examining the correla-
tions between Y and Z;(i = 1,...,p — 1). One can also use the
dominant right hand characteristic vectors (characteristic vectors
associated with “large” characteristic values) of [ — 11/(1’1)~1|2
as the column of B for generating the covariates Z for model (Eq.
22). These ideas will be illustrated in the numerical examples
considered later.

Consider Pirt’s (1965, 1975) model discussed earlier; when ni-
trogen, substrate, oxygen, carbon dioxide and biomass measure-
ments are available at least four different types of true growth
yields and maintenance coefficients can be independently esti-
mated. However using the concept of available electrons and the
relationships (Erickson et al., 1979; Ferrer and Erickson, 1979)
between Y, YT** Y5, and 9max and the relationship between
mg, mg, mp and m,, the true growth yields and maintenance pa-
rameters are unified and Eqgs. 16, 17, 18 and 19 can be reparame-
terized to the form

LB rmt+ e (25)
TINg Nmax
E_SYs o=t fme+ e (26)
n  O0bYh Tmax
Em+eo=-"L+m, + e @n
n MNmax
Egetd)=-ttm + e (28)
T’ max

where o, and o, are the fractions of carbon in substrate and bio-
mass respectively, v, and 1y, are the reductance degrees of organic
substrate and biomass respectively, and €, €;, €5, and ¢4 are the
random errors. The dependent variables /7N, and /7 from Egs.
25 and 26 respectively are obtained from nitrogen, biomass and
substrate, and substrate and biomass measurements. The dependent
variables in Eqgs. 27 and 28 involve the available electron balance
(n + ¢) and the carbon balance (y, + d) respectively. For consistent
data the constraints  + € = 1 and y, + d = 1 are satisfied and Eqs.
26, 27 and 28 are essentially identical. However since the available
electron and carbon balances are rarely satisfied, due to mea-
surement errors, different estimations of 1,., and m, can be ob-
tained from the above equations. If the data is statistically adjusted
such that it satisfies the available electron balance and carbon
balance constraints then only one estimate to the parameters can
be obtained from the three equations. However our approach has
been not to adjust the data to satisfy the constraints but instead to
use the dependent variables which are related by the available
electron balance and carbon balance as correlated multiresponse
observations.

The columns of the data matrix X of model (Eq. 21) are the N
observed responses
'

n

—_—

TINg

(m+e (yc + d)]
n s m
7 7
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The A matrix is

1 e
A= [ 1...1 ]
M1 Mg ... UN
where u,(i =1, . .. N) are the observed specific growth rates. The
parameter vector is

nmax

For convenience, in almost all cases, we choose B to be a matrix
with columns which are coefficients of the orthogonal polynomials.
In this example with four responses

-3 1-1
|11 8
1-1-3
31 1

The covariates are defined as
Z = (4,75, 7Z5) = X'B.
Y4
Ya
Yy
LYy

The corresponding conditional model is

Y=X'

m,
L

1 \
1 pg 3

Y=1 +> uZ + e (29)
H nmax) i=1

1un

For the extracellular product formation case, Egs. 7, 8 and 9 may
be rearranged and put into linearized form as follows:

1
1/77 = l/nmax+T£ + m{gﬂ) + € (30)
AT
€e+n+ 1
hnts l/ﬂmax'*'"nk + _m;(gg) + € (31)
[T S V|
Yetztd_,, o M iax(éz)ﬂs (32)
po My

Again the dependent observations of Egs. 31 and 32 involve the
available electron balance and the carbon balance. Also when the
constraints are satisfied 7 + €+ £, =landy, + d + z =1 and
Egs. 30, 31 and 32 are identical. When no data adjustment is made,
this can be treated as a multiresponse observation and the covar-
iance adjustment technique can be used for estimation of the pa-
rameters.

NONLINEAR ESTIMATION PROCEDURES

Equations 7, 8 and 9 will be referred to as Form I and used with
nonlinear parameter estimation methods to obtain estimates of
Mmax Me, and £5**. Multiplication of each term in Egs. 7, 8and 9,
by u gives Form II:

B By, ot L (33)
7 Mmax n Ep
€ l__ X 1 — fmax
ﬁ:Af’_,#.,.mengE_’:(_l__‘gL) (84)
n Tnax n \ &
1____5_77m ) I_J_i max
d ( ax P
“z_L_,ﬂ.Fme.{,.gL“_ ___;Yp__

o } (85)
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Form I and Form II correspond to the two different forms
considered previously in yield studies without products (Pirt, 1965;
Hempfling and Mainzer, 1975). Because of measurement errors,
parameter estimates differ for each of these six equations. Equa-
tions 7 and 33 give different parameter estimates because the forms
of the two equations differ while Eqgs. 7, 8 and 9 give different
parameter estimates because different experimental data is used.
Biomass, product, organic substrate, and specific growth rate
measurements are used with Eq. 7 or 33, Oxygen, biomass, product
and specific growth rate measurements are used with Eq. 8 or 34.
Carbon dioxide, biomass, product, and specific growth rate mea-
surements are used with Eq. 9 or 35.

Several different methods of nonlinear statistical treatment of
the data may be employed to obtain point and interval estimates
of Mg, Tmax, and £5°%. Two different methods are employed in this
work and the results are compared (Oner et al., 1983).

Nonlinear Method |

Equations 7-9 and 33-35 can be rearranged in the following
form:

Y= +t—+Xg——-+te
u Nmax X 1 21 I;ax Y (86)
1- m v
Yo =i Mmmn M |y 1T (37)
Nmax Xli EZ"“
L e 1= Tege
Y3 = 7 + B(Te + Xy ’__mLax— + ey (38)
max: i r
_ 1 o1
Yy = " Xy + me + X21W + ey (39)
max P
_ 1 — Dmax o1 ___gmeax
Ysi=—— Xy + me + Xy Fmax + es (40)
max p
1“%’1::“ 1"&5';'“
b ’
Yo = — P Xy e+ Xy ——Z—t ey (41)
max )
where;
1 € d
Yu==» Yy=— Yy=—
Ul Ni i
Ya=t, y, =84, y, =G
Ul ™ N
Xi= i, Xg =B, xj =5k
: h k7]

i=12,...,N where N is the number of data points. The values
of reductance degree 75, 3, and v, are constants for specified
substrate, biomass and extracellular products, respectively (Er-
ickson et al., 1978, 1979). The last term in Eqs. 36-41, ey, is an error
term. It can be defined as:

eﬁ = in,obs - in,calculated (42)

One can find the estimates of parameters m,, 1.y and §5°* by
using a nonlinear least square technique which is based on mini-
mizing the quantity (Draper and Smith, 1966).

N
Y legforj=12,....6 (43)
i=1
Also, it is possible to obtain combined estimates of parameters
from M of Egs. 7-9 or 33-35 by minimizing (Hunter, 1967; Ball
and Groenweghe, 1966).

M N
> 2 (e (44)
i=14=1

for M equations each with N data points.

For the case of correlated Y, and Y;:(j # j’), Box and Draper
(1965) have derived a determinant criterion which, when mini-
mized with respect to the parameters, M., fmax and £5° gives
estimates of these unknown parameters in the multiresponse models
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(Eqgs. 26-38 or 39-41); that is, the determinant of the following
matrix is minimized.

— N N N —1
Y (en) X lewdea) ... .. .. > {ew)ems)
i=1 1=1 =1
3 (ealer) & (o). .o oo  (eaems) | (45)
i=1 i=1 i=1
'N N ‘ N
L 2 (emlen) L (ean)ea) .. ... ... > (emi)?
i=1 i=1 = _

In this work, the Hooke and Jeeves Pattern Search Technique
{(1961) was used to estimate parameters by minimizing the above
determinant.

For 95% confidence intervals of parameters, the Smooth
Bootstrap Method was used (Efron, 1979, 1981).

Basically, N sets of data are generated based on the assumed
model and the observed data using Monte Carlo simulation tech-
niques. From the N sets of generated data, N estimates of the pa-
rameters are obtained. These estimates are arranged in ascending
order as for example,

nax < Mo S o0 < Hlax (46)

Then a 95% confidence interval for Nmax i5 [7nax, Nor] Where r is
the integral part of 0.025 N. Of course, the larger the value of N
the more accurate the estimated interval is.

Nonlinear Method [l

As a first step, nonlinear regression was applied to each of the
Egs. 36-38 or 39-41 to obtain least squares estimates of errors (&)
by using SAS (1979).

These estimates of errors were used to estimate the variance
covariance matrix (2) as follows:

e -

N N
El (ény El (er)égs) ... .. '§1 (81:)(ém:)
R e IO o £ (alew) |47
N N N
L @wlen) X @ulez) ... £ (6w

where P is the number of parameters to be estimated.
Combined point estimates were obtained by minimizing the
following quantity:

€1i

e
(ersea, - . . eas) E71 %i (48)

M=z

)

i=1

€Mi
where ey, is given by Eq. 42; that is
€i = Ypirobs = Fy(X10,X2i (0r X5,).Me, Nmax. E5™) (42)

Again, the Hooke and Jeeves Pattern Search Technique (1961) was
used.

This method is principally weighted least squares based on the
estimated covariance matrix. The 95% confidence intervals were
estimated with the same procedure of Method 1.

RESULTS AND DISCUSSION

The parameters m,, Nmays, and £5** are estimated using the
methods described above. Only positive values of these parameters
are physically meaningful. Values of the maintenance coefficient
are often small, and it is common for the 95% confidence interval
to include zero. Values of 1may and £5* should be less than one; the
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TABLE 1.

ESTIMATES OF TRUE BIOMASS ENERGETIC YIELD AND MAINTENANCE PARAMETER FROM BIOMASS, DILUTION RATE, OXYGEN AND
SUBSTRATE DATA FOR THE GROWTH OF PARACOCCUS DENITRIFICANS

Culture Z, Included &2 Nenax m,, h™1
References Medium Pyz, N Asa Covariate? N-r-g-1 Point Interval Point Interval
Meijer et al. (1977)  Gluconate limited —0.740 17 Yes 9.026 « 1076 0.634 [0.601,0.672] 0.017 [0.002, 0.031]
” ” ” ” No 1.174+ 1075 0.605 [0.579,0.633] 0.016 [—0.002, 0.033]
Meijer et al. Gluconate
(1977) with sulfate
limitation —0.589 11 Yes 1.245 %1075 0547  [0.509, 0.592]  0.029 [0.012, 0.047]
” ” ” 7 No 2.175 #1075 0.520 [0.480, 0.567}  0.036 [0.013, 0.059]
Meijer et al. Succinate
(1977) limited —-0.871 14 Yes 1927 + 1075 0.585 [0.531,0.652] 0.036 [0.017, 0.056)
” ” ” ” No 3517 « 1075 0513  [0.479, 0.552] 0.037  [0.009, 0.064}
Meijer et al. Succinate
(1977) with sulfate
limitation —0.436 13 Yes 1.131 + 1073 0.464  [0.440,0.490] 0.049 [0.031, 0.068]
” ” ” ” No 1.970 « 107 0.450  [0.442,0.482] 0.066 [0.046, 0.087]
Van Verseveld Malate
and limited —0.208 10 Yes 3.694 « 1074 0.581 [0.545,0.621] 0.049 [0.024, 0.074]
Stouthamer
(1976)
” ” ” ” No 2,822 «107% 0579 [0.548,0.615] 0.050 [0.027, 0.072}
Van Verseveld Mannitol
& Stouthamer limited - 739 13 Yes 2653 x 1075 0.611 [0.563,0.669] 0.016 [—0.006, 0.039]
” ” ” ” No 4.046 + 1075 0567 {0.527,0613] 0.010 [-0.018, 0.038]

Z=[-11]X

biochemical maximum for 7,,,, appears to be about 0.88 (Erickson,
1980).

The data in Table 1 represents processes with two responses. It
contains the estimates of the true biomass energetic yield, 7., and
maintenance, m, obtained using the direct measurement of bio-
mass and substrate only in Eq. 26 and the values of the available
electron balance in Eq. 27 for the growth of Paracoccus dentrifi-
cans on several culture media. The estimates were obtained
using the covariance adjustment technique. It was observed that
point and interval estimates obtained when the covariates were
included were identical to maximum likelihood estimates reported
in an earlier paper (Solomon et al., 1982). As discussed in the theory
section the magnitudes of the correlation coefficient (p,z,), 62/(N
— r — g — 1) and the interval estimates are to be examined and
compared. When the value of the correlation coefficient is high,
inclusion of the covariate may be advantageous. Examination of
the results in Table 1 shows that when the value of the correlation

ey
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Figure 1. Regression lines and data for growth of Paracoccus denitrificans

in malate limited continuous culture. Regression lines with covariates and

without covariates are represented by the same line. Circles represent data

based on biomass and substrate measurements while squares represent data
based on biomass and oxygen measurements.
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coefficient is large in magnitude, the smallest values of 62/(N —
r — g — 1) are associated with the results where the covariate Z,,
is included. Also the shortest confidence interval for m, is always
associated with the result which gave the smallest value of 42/(N
—r — g — 1). For the malate limited culture, best results are ob-
tained when the covariate Z;, is not included (that is the MLE is
not the best estimator); this is what one would expect based on both
the small value of the correlation coefficient and the fact that the
smaller value of 62/(N —r — q — 1) occurs when the covariate is
not included.

_The regression results are shown graphically in Figures 1 and
2 for the malate limited culture. The regression line which is shown
represents both the MLE result and the result without any covar-
iates (the two curves are so close to each other that only one line is
shown). In Figure 1, the circles correspond to the lefthand side of
Eq. 26 which is obtained from biomass and substrate measure-
ments. Biomass and oxygen measurements are used to obtain the
values of (7 + €)u/n for Eq. 27 which are shown as squares in
Figure 1. The regression line is obtained by using the estimated
values of the parameters m, and 7., to calculate

g;=me + =

(49)
nmax

The residual plot corresponding to Figure 1 is shown in Figure
2 where i ; — #; is the residual. For the MLE case in which a co-
variate is included, the term involving the covariate, 012, is added
to the righthand side of Eq. 49 in calculating the predicted value.
The distribution of points on the residual plot supports the validity
of the model. The small differences between the two regression
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Figure 2. Residual plot of y, — ¥, for Paracoccus denitrificans in malate limited
culture for data in Figure 1. Circles represent residuals with covariate ad-
justment while squares are for the case of no covariates.
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TABLE 2. ESTIMATES OF TRUE BIOMASS ENERGETIC YIELDS AND MAINTENANCE PARAMETERS FROM BIOMASS, SPECIFIC GROWTH RATE, O,
COgz, GLUCOSE AND NITROGEN DATA FOR THE GROWTH OF CANDIDA UTILIS ON FILTERED AND UNFILTERED GLUCOSE FROM CORN DUST

Covariates &2 Dmnax m,, h™1
Medium Included N-r-g-1 Point Interval Point Interval

a — 9.375 % 10~3 0.616 [0.552, 0.695] 0.045 {—0.033, 0.123]
b — ” 0.557 [0.509, 0.616] 0.004 (—0.080, 0.088]
a Z 9.848 x 105 0.616 [0.552, 0.696] 0.044 [~0.034, 0.123]
b Z, 7 0.573 [0.513, 0.649] 0.017 {—0.072, 0.106]
¢ 7y 8.091 1075 0.612 [0.554, 0.683] 0.034 [~0.038, 0.106]
b Zs ” 0.668 [0.559, 0.829) 0.098 [—0.0108, 0.206]
a Za 1.009 + 10— 0.622 [0.558, 0.712] 0.046 [~0.034, 0.126]
b Zs ” 0.571 {0.500, 0.667) 0.008 {—0.079, 0.095]
e 2125 8.414 « 1075 0.610 [0.553, 0.681] 0.030 [~0.043, 0.102]
b YAWZS ” 0.693 [0.571, 0.882] 0.119 [—0.008, 0.235]
a 2123 1.066 * 10~4 0.606 [0.532, 0.704] 0.043 [—0.038, 0.123]
b YAWAS ” 0.563 10.491, 0.659] 0.019 [—0.072, 0.111]
a Z5,73 8.773 » 1075 0.605 {0.543, 0.683] 0.032 [—0.042, 0.105]
b 23,73 ” 0.661 [0.550, 0.827] 0.102 [—0.010, 0.214]
a 212575 9.032 » 105 0.625 (0.552, 0.720] 0.031 [~0.043, 0.104]
b 21,2223 7 0.739 [0.564, 1.07] 0.128 {0.007, 0.249]
al z* 8.47 x 1075 0.608 [0.550, 0.679) 0.030 [—0.043, 0.103]
b! VA 8.47 » 1075 0.683 [0.567, 0.859] 0.115 [0.00008, 0.231]

Medium a is filtered glucose; medium b is unfiltered glucose; pyz, = 0.507, pyz, = 0.700, pyz, = 0.704, pz,7, = 0.823, pz,z, = 0.872, pzez, = 0.782.

1 Analyzed using the right eigenvector of (I — 11(1’1)~|S with dominant eigenvalues.

3 -1

13

1 -1 -1 11x

1=(2.7%%) =[
-1

3 =8 1

,=[—0.3096 —0.3420 —0.2103 0.8619

0.8083
Data of Solomon et al. (1981). N = 15 for medium a; N = 14 for medium b.

lines are supported by the similarities of the two sets of resid-
uals.

Contained in Table 2 are the results of covariance adjustment
technique for the analysis on the data obtained for the growth of
Candida utilis on filtered and unfiltered glucose obtained by en-
zymatic hydrolysis of corn dust (Solomon et al., 1981). All of the
data for medium a (filtered) and medium b (unfiltered) were
combined to obtain the values of the correlation coefficients and
62/(N — r — q — 1). In this analysis all nitrogen, biomass, substrate,
oxygen and carbon dioxide data were used. Thus this is a situation
with four responses per observation; the available electron and
carbon balances were used in addition to the direct measure of
biomass and substrate only and the indirect biomass estimates
obtained from nitrogen and substrate measurements. The data and
the consistency of the data have been reported by Solomon et al.
(1981).

The results in Table 2 show that the inclusion of covariate Z,
alone in the model is the best since the value of §2/(N ~r — g —
1) = 8.091 * 1075 is the lowest of all other combinations. However
looking at the correlation coefficient it can be seen that all of the
covariates Z;, Z,, and Z; are highly correlated with Y and are also
highly correlated with each other. Based on the correlation coef-
ficients, one would tend to assume that the best model should
correspond to the results when all the covariates are included;
however, because the covariates themselves are highly correlated,
inclusion will not be advantageous since the information in just one
or two could be as good as that obtained frorm all. Examination of
Table 2 shows that the selection of the best estimate could become
very cumbersome as the number of covariates increase; this is be-
cause the number of combinations increase very rapidly with
number of responses. For example, with two responses, we have two
alternatives; with three responses, there are four alternatives; while
with four responses, eight different alternatives need to be explored.
Instead of going through this boring process of examining various
combinations, a more efficient method discussed in the theory is
also tried. The three nonzero characteristic values of [I — 11/(1"-
D12 are (0.4096, 0.0777, 0.0651). The corresponding charac-
teristic vectors are respectively (—0.3096, —0.3420, —0.2103,
0.8619),(0.8083, —0.4623, —0.3641, 0.0181), and (0.0275, 0.6475,
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—0.4623

~0.3641 0.0180,

—0.7571, 0.0821). The two characteristic vectors corresponding
to the two dominant characteristic values are chosen as the two
columns of B. The results obtained are very similar to those ob-
tained including only Z; as covariate. In fact, the “dominant
characteristic vectors” method gives shorter confidence intervals
for Nmay and m,, for growth on filtered glucose (Table 2).
Figures 3, 4, and 5 graphically illustrate some of the results re-
ported in Table 2. Figure 3 shows the regression lines for the case
where the hydrolyzed corn dust is filtered prior to using the filtrate
as substrate. As shown in Figure 3 the regression line when no co-
variates are used (solid line) and the regression line with the co-
variate Z* (dashed line) differ sufficiently that two separate lines

<

o L L Il L L 1 | J
] [sA} 0.2 0.3 04 0.5 0.6 0.7 08

bt

Figure 3. Regression results for Equation (29) and data for growth of Candida
utilis on filtered glucose from corn dust. Lines correspond to Tahle 2 results
for no covariates {solid line) and covariate Z* (dashed line). Circles corre-
spond to substrate and biomass data; squares correspond to oxygen and
biomass data; triangies correspond to CO, and biomass data; plus signs
correspond to nitrogen, substrate, and biomass data.
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Figure 4. Residual plot of y; — ¥, for Candida utills for data shown In Figure
3. Circles represent residuals with covariate adjustment while squares are
for the case of no covarlates.

may be drawn. In each case the parameter estimates are used with
Eq. 49 to draw the regression lines. The ordinate associated with
the data is the left hand side of Eq. 25 for the plus signs, Eq. 26 for
the circles, Eq. 27 for the squares and Eq. 28 for the triangles.

Figure 4 shows the residuals (§; — §,) for the results in Figure
3. For the case in which covariates are included, Eq. 29, with the
estimated values of the parameters, is used to calculate § ; that is,
the terms involving the covariates are included in the right hand
side. The points on the residual plot appear to be nearly randomly
distributed. The magnitude of the residuals with and without co-
variates is similar in a number of cases.

Figure 5 shows the regression line and data for growth on me-
dium b in which the residual solids are not filtered out. The solid
line for the case in which no covariates are used in parameter es-
timation has a larger slope than the two dashed lines in which co-
variate adjustment was used. This is because the relatively scattered
nitrogen data is weighted more heavily when no covariates are
included than it is when covariate adjustment is used.

In Figures 3 and 5, it is clear that additional data at low specific
growth rates would be desirable. This is difficult to obtain in batch
culture, but batch culture followed by fed batch culture may be
used to enhance data collection at low specific growth rates (Sol-
omon et al., 1983).

Tables 3 and 4 compare the point and interval estimates obtained
by different estimation procedures for the true biomass energetic
yield and maintenance coefficient for Candida utilis growth on
filtered glucose. In Table 3, estimates were obtained using direct
biomass and substrate measurements, available electron balance
and carbon balance; thus there are three responses for each ob-
servation. The point and interval estimates for both 7, and m,
are quite similar for the methods. In Table 4, estimates were ob-
tained using the nitrogen measurement in addition to the data used
in Table 3. The estimates obtained for 7., 2and m,, are quite similar
in the two cases when the linear estimation procedures, covariance
adjustment and MLE were applied. However, due to the increment
in the number of responses, the size of the matrix whose determi-
nant is to be minimized by Hooke and Jeeves search technique
increases; thus, the estimates obtained, when the nonlinear pro-
cedures were used, were quite sensitive to the step sizes and starting
points and also required a lot of computing time. This is explained
in terms of the presence of several local minimum as the number
of responses increase.

Tables 5 and 6 compare the estimates obtained using the esti-
mation procedures for growth on unfiltered glucose. Due to the
presence of unhydrolysed corn dust residues the measurement of
biomass was difficult and thus the data was inconsistent (Solomon
et al., 1981). The estimates of 7,4, and m, in Table 6 using the
covariance adjustment technique appear to be substantially im-
proved when the nitrogen data is included. The values of 7ax =
0.683 and m,, = 0.098 h—! are very reasonable and the 95% confi-
dence intervals of [0.567, 0.859] for n,ax and [0.00, 0.231] for m,
are such that one would reasonably expect these intervals to include
the actual values of the parameters. These values are considerably
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Figure 5. Regression results for Equation {29) and data for growth of Candida

utilis on untiltered glucose from corn dust. Lines correspond to Table 2 rasults

with no covariates (solid line), Covariate Z* (dashed line), and Z, (long and
short dashes). Data symbols as in Figure 3.

better than the estimates obtained previously by Solomon et al.
(1981). Due to the inconsistency none of the methods could yield
a vety good result in Table 5. In Table 6, the nonlinear methods
again had their problems due to the large number of responses at
each observation.

Table 7 contains the estimate of true biomass energetic yield,
Nemax true product yield £5°* and the maintenance coefficients m,,
for a growth process with product formation (Erickson and Hess,
1981). In this case the microorganism Rhizobium trifolii produced
polysaccharide in a chemostat culture. The results in Table 7 show
that the point estimates of the true biomass energetic yield, 7max,
are very consistent for nonlinear methods I and II and the covar-
iance adjustment technique for Form I and Form II, but that the
estimates for Form [ are larger than those for Form II. The interval
estimates for 9,,, differ considerably; nonlinear method II gives
the shortest interval for Form I while nonlinear method I gives the
shortest interval for Form II. These two intervals are similar. The
covariance adjustment procedure gives the largest 95% confidence
intervals. Note that in this analysis Egs. 7, 8, 30, 31, 33 and 34 are
used; the carbon dioxide data in the carbon balance needed for Eqs.
9, 32 and 35 is not available. Thus, there are only two responses.

The point estimates for the true product energetic yield £ are
very similar in Table 7 for nonlinear methods I and II and covar-
iance adjustment technique for both Forms I and I1. The interval
estimates include an interval which exceeds the maximum theo-
retical value of 0.93 (Erickson and Hess, 1981) except for Form 1,
nonlinear method I1. The interval of interest is from the lower limit
to 0.93. The shortest interval 0.61 < £7** < 0.89 from Form I,
nonlinear method II appears to be a realistic interval.”

The point estimates for the maintenance coefficient, m,, are all
relatively small for all the methods and both forms. All of the in-
terval estimates include an interval where m, is negative; however,
this can be removed because m, must be positive based on ther-
modynamic considerations. The interval estimates show that m,
is small for this organism.

The nonlinear estimation methods utilize the Bootstrap method
which does not require any distributional assumptions with regard
to the model of the data in constructing the confidence interval.
Because of the simulation approach which is used to obtain the
confidence intervals the interval may deviate slightly from a 95%
confidence interval. The accuracy of the interval depends on the
number of simulations which might require a lot of computer time.
To use the covariance adjustment method, the equations need to
be linearized; this linearization of the equations may affect the
estimator.

When only two or three responses are observed, the nonlinear
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TABLE 3. ESTIMATES OF TRUE BIOMASS ENERGETIC YIELD AND MAINTENANCE COEFFICIENTS FROM BIOMASS, O, COg AND GLUCOSE
MEASUREMENT FOR THE GROWTH OF CANDIDA UTILIS ON FILTERED GLUCOSE FROM CORN DUST

nmax me 2 h‘—l
Method of Analysis Point Interval Point Interval
Cov. Adjustment 0.615 [0.559, 0.682) 0.020 [—0.047, 0.086]
MLE 0.643 [0.574, 0.731] 0.028 [—0.038, 0.094]
Nonlin. Method I 0.657 [0.625, 0.706] 0.027 [—0.010, 0.073]
Nonlin. Method II 0.643 [0.580, 0.717] 0.026 [0.020, 0.035)

Data of Solomon et al. (1981). N = 15.

TABLE 4. ESTIMATES OF TRUE BiOMASS ENERGETIC YIELDS AND MAINTENANCE COEFFICIENTS FROM BIOMASS, Og, CO3, NITROGEN AND
GLUCOSE MEASUREMENT FOR THE GROWTH OF CANDIDA UTILIS ON FILTERED GLUCOSE FROM CORN DUST

Ninax me, h7!
Method of Analysis Point Interval Point Interval
Cov. Adjustment 0.608 [0.550, 0.679] 0.030 [—0.043, 0.103]
MLE 0.625 [0.558, 0.720] 0.031 [—0.047, 0.104)
Nonlin. Method I 0.578 [0.500, 0.670] 0.059 [0.041, 0.062]
Nonlin. Method 11 0.589 [.554, 0.610] 0.060 [0.053, 0.067}]

Data of Solomon et al. (1981). N = 15.

TABLE 5. ESTIMATES OF TRUE BIOMASS ENERGETIC YIELD AND MAINTENANCE COEFFICIENTS FROM BIOMASS, O, COg AND GLUCOSE
MEASUREMENT FOR THE GROWTH OF CANDIDA UTILIS ON UNFILTERED GLUCOSE FROM CORN DUST

Tmax me, h™1
Method of Analysis Point Interval Point Interval
Cov. Adjustment 0.842 [0.692, 1.08] 0.184 [0.083, 0.286)
MLE 0.869 [0.711, 1.12] 0.166 (0.063, 0.269]
Nonlin. Method 0.726 [0.690, 0.750] 0.155 [0.103, .278]
Nonlin. Method 11 0.754 [0.710, 0.780] 0.144 [.119, .259]

Data of Solomon et al. (1981). N = 14.

TABLE 6. ESTIMATES OF TRUE BIOMASS ENERGETIC YIELD AND MAINTENANCE COEFFICIENT FROM BIOMASS, Og, CO3, NITROGEN AND
GLUCOSE MEASUREMENT FOR THE GROWTH OF CANDIDA UTILIS ON UNFILTERED GLUCOSE FROM CORN DUST

nmax me’ h_l
Method of Analysis Point Interval Point Interval
Cov. Adjustment 0.683 [0.567, 0.859)] 0.115 [0.00,0.231]
MLE 0.734 [0.564, 1.07} 0.128 [0.007, 0.249]
Nonlin. Method I 0.815 [0.749, 0.955] 0.019 [0.004, 0.026)
Nonlin. Method IT 0.921 [0.855, 1.05] 0.098 [0.085, 0.104]

Data of Solomon et al. (1981). N = 14.

TABLE 7. POINT AND INTERVAL ESTIMATES OF TRUE ENERGETIC YIELD PARAMETERS OF CHEMOSTAT CULTURES OF RIZOBIUM TRIFOLIT*

mg, h~! Nmax E:‘“

Point Interval Point "~ Interval Point Interval
Equations are in Form I
N. Lin. Regression of Eq. 7 0.02355 — 0.89966 — 0.45138 —
N. Lin. Regression of Eq. 8 0.00809 — 0.64943 — 0.73500 —
N. Lin. Methed 1 0.00715 [—0.00335, 0.01715] 0.63849 [0.45705, 0.80305] 0.77195 [0.52394, 1.12168]
N. Lin. Method 11 0.00665 {—0.00093, 0.01425] 0.63306 [0.52832, 0.68386] 0.78166 [0.61453, 0.89365]
Cov. Adjustment 0.00658 [—0.01322, 0.02637] 0.63220 [0.47382, 0.94986] 0.78315 [0.50885, 1.69900]
Equations are in Form I
N. Lin. Regression of Eq. 33 0.00989 — 0.70756 — 0.51924 —
N. Lin. Regression of Eq. 34 0.00410 — 0.59963 — 0.83510 —
N. Lin. Method I 0.00409 [—0.00670, 0.01329] 0.59789 [0.53422, 0.68911] 0.85395 [0.68143, 1.10871]
N. Lin. Method II 0.00401 [—0.00514, 0.01375] 0.59709 [0.52428, 0.70353] 0.85571 [0.67555, 1.14526)
Cov. Adjustment 0.00382 [—0.02017, 0.02782] 0.59529 [0.44524, 0.89793] 0.86011 [0.53638, 2.16943]

* Data of de Hollander et al. (1979). N = 11.
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methods are quite appropriate as convergence is usually quick,

however, as the number of responses increase, the covariance ad--

justment procedure is definitely preferred since it is very easy to
use. The results from covariance adjustment may also be used as
a starting point with the nonlinear methods.

From Table 7, independent estimates of the parameters by
nonlinear regression of equations (Egs. 7, 8, 33 and 34) show the
need to simultaneously use all the information available. The use
of the available electron and carbon balances in addition to the
direct measurement of biomass and substrate data and when
available nitrogen data, allow better point and interval estimates
to be obtained.

Additional applications of the covariate adjustment approach
are reported elsewhere, and an example is worked in considerable
detail (Solomon et al., 1983).
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NOTATION

A = pXN matrix of known coefficients and input variables
in model (Eq. 21)

B = pX(p — 1) matrix of rank (p — 1) chosen such that
B1=0

d = moles of carbon dioxide per g atom carbon of organic
substrate, gmol/g atom carbon

E = pXN error matrix in Eq. 21

ey = element of error matrix

m = maintenance coefficient; m, is g equivalent of available

electrons of substrate consumed per g equivalent of
biomass per hour
MLE = maximum likelihood estimate

N = number of observations

P = number of parameters, Eq. 47

P = number of observed responses in Eq. 21

Qco, = specific rate of evolution of carbon dioxide, gmol/g dry
wt. (h)

Qo, = specific rate of oxygen consumption, gmol/g dry wt.
(h)

Qs = specific rate of organic substrate consumption, g/g bio-
mass (h)

q = number of covariates employed

r = number of parameters in Eq. 20

X = pXN response matrix

Y = biomass yield

Y = response vector of dimension N

Ui = mean of p responses for the ith set of responses

74 = predicted value of response based on parameter esti-
mates

Ye = biomass yield based on carbon, g biomass carbon per g
substrate carbon

Y/ = covariate matrix of dimension NXq where g = p — 1
when all covariates are included

z = fraction of substrate carbon incorporated into products

Greek Letters

o = parameters associated with covariates

0% = reductance degree; v, is equivalents of available electrons
of biomass per g atom carbon of biomass; v, =4 +p —
2n — 3¢ based on formula for biomass in Eq. 10 and the
valencesC =4, H=1,0=—2and N = =3

€ = fraction of available electrons transferred to oxygen
€1 = element in error matrix
n = fraction of available electrons transferred to biomass;

biomass energetic yield

Page 756 September, 1984

Tmax = true growth yield

7 = specific growth rate, h—!

¢ = parameter vector in Eq. 21

& = fraction of available electrons incorporated into products;
product energetic yield

7% = true product yield

P = correlation coefficient

o = mass fraction carbon

o? = conditional variance associated with Eq. 22

&2 = mean square error of conditional model

Subscripts

b = biomass

D = carbon dioxide

e = available electron basis

M = number of responses

Ny = nitrogen

Oy  =oxygen

0 = oxygen

p = product; number of responses

s = substrate
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Mass Transfer in AC Electrolysis

Part I: Theoretical Analysis Using a Film Model for Sinusoidal Current on

a Rotating Hemispherical Electrode

A film model is presented for the analysis of mass transfer to a rotating hemi-

C. Y. CHENG and D-T. CHIN

spherical electrode when sinusoidal alternating current (AC) together with direct
current (DC) are flowing across the electrode surface. The concentration of a dif-
fusing ion is separated into two independent components: a constant DC compo-
nent and a periodic AC component. The DC concentration is obtained by solving
the steady-state convective mass transport equation with the perturbation method.
The periodic AC concentration distribution is analyzed by the solution to the
one-dimensional transient diffusion equation based on the concept of Nernst dif-
fusion layer. The limiting AC current densities corresponding to a zero surface
concentration of a reactive ion are investigated for various DC current densities
and AC frequencies. The resulting periodic concentration overpotential wave and
its phase shift with respect to the applied AC are examined. A comparison with
a previous rigorous:model indicates that the film model is a good approximation
to the mass transfer calculation in the regimes of a dimensionless AC frequency
K = (w/Q)Scl/3 greater than 2 and less than 0.01.

SCOPE

Department of Chemical Engineering
Clarkson University
Potsdam, NY 13676

Electrolysis with a direct current superimposed with a peri-
odically alternating current component has been long used in
pulse plating, in electrodissolution to increase anode corrosion,
in AC anodizing to improve color and dye penetration, and in
the AC corrosion processes (Venkatesh, 1979), AC can enhance
the kinetics of electrochemical reactions, change the morphol-
ogy of electrodeposits, and cause the pitting corrosion of passive
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metals. AC also improves the mass transfer rate by producing
a pulsating concentration boundary layer of reactive ions near
the electrode surface, and a very large AC of an order of 10-100
times greater than the DC-limitng current density can be used
for electrolysis without affecting the coulombic efficiency of
the electrode reaction.

This work examines the mass transfer to a rotating hemi-
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