
Estimation of Parameters Where Dependent 
Observations Are Related by Equalit! 
Constraints 

Pirt’s model for microbial growth and p rocx t  formation are reparameterized 
to obtain multiresponse models with common parameters. The dependent variables 
in the models are related through the available electron and carbon balance con- 
straints. Covariance adjustment is used to reduce the growth model to a unit variate 
linear model with covariates. Therefore, standard multiple regression programs 
can be used to obtain combined point and interval estimates of true biomass en- 
ergetic yield, true product yield and maintenance coefficient. This approach may 
yield “better” estimates than the maximum likelihood approach when an appro- 
priately selected subset of covariates is used. Nonlinear estimation procedures are 
also considered; these procedures are efficient with few responses; however, as 
the number of responses per observation increase, they may require a lot of com- 
puting time. For illustration several data from the biochemical engineering liter- 
ature are analyzed by the proposed methods. 
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SCOPE 

Advances in genetic engineering are being applied by mi- 
crobiologists, plant scientists and animal scientists to develop 
new and improved strains of a wide variety of growing organ- 
isms. In most cases, efficient growth is an important objective. 
In other cases, product formation efficiency is important. For 
each improved strain which is developed, optimum conditions 
for growth and product formation are also of interest. 

This work is concerned with the application of statistical 
methods of parameter estimation, and data consistency analysis 
to growth and product formation where the dependent variables 
are related by equality constraints. In earlier work, parameter 
estimation results with point and interval estimates are reported 
by Erickson and Hess (1981), and by Solomon et al. (1981,1982). 
Data consistency analysis and methodology to use all of the 
available measurements to obtain maximum likelihood esti- 
mates have also been reported previously by Solomon et al. 
(1 982). 

When more than the minimum number of variables are 
measured, if measurement error is considered, parameter esti- 
mation results depend on which of the measured variables are 
selected for use in parameter estimation. Models relating the 
response with the common parameters can be put into a type 
of multivariate linear model which is a special case of the gen- 
eral growth curve model introduced by Putthoff and Roy (1964). 
In earlier work (Solomon et al., 1982), this type of model was 

used to analyze data obtained from fermentation processes. The 
method of analysis was based on results obtained by Khatri 
(1966) and Rao (1967). In this paper, using Rao’s (1965, 1966, 
1967) ideas of covariance adjustment and following Grizzle and 
Allen (1969), this special type of growth curve model can be re- 
duced to a unit variate linear model with covariates. Therefore, 
standard multiple regression programs can be used to estimate 
parameters and to test hypotheses concerning the parameters. 
Moreover, the covariance adjustment approach provides ad- 
ditional flexibility in weighting by choosing subsets of covar- 
iates. An approximately selected subset of covariates may in 
some cases yield “better” estimates than using all the covariates. 
In this work, the results show that the estimates with shorter 
95% confidence intervals are frequently obtained when co- 
variate adjustment is used. 

Also presented are some nonlinear parameter estimation 
techniques using the Hooke and Jeeves (1961) Pattern Search 
Technique to estimate parameters by minimization of some 
determinant criteria which have been considered previously 
by Oner et al. (1983) and Box and Draper (1965). The 95% con- 
fidence intervals of the parameters are constructed using the 
Smooth Bootstrap method (Efron, 1979,1981). 

The applicability of the linear as opposed to the non-linear 
techniques are discussed from a computational point of 
view. 

CONCLUSION AND SIGNIFICANCE 

Application of the available electron and carbon balances and 
the associated regularities has unified all the different types of 
yields and maintenance coefficients in Eqs. 16-19; more than 
one estimate of the yield and maintenance parameters may be 
obtained. The statistical methodologies which are presented 
allow one to combine the different estimates and has led to 
improved point and interval estimates for the true biomass en- 
ergetic yield, true product yield and maintenance coeffi- 
cients. 

The maximum likelihood estimator using all the covariates 
is not always the best estimator. In fact including only appro- 
priately selected subsets of covariates sometimes yields better 
estimators. The “dominant characteristics vector” method is 

also an efficient and simple method for determining useful co- 
variates. 

The results also show that the parameter estimates are sen- 
sitive to the form of the equations. Forms I and I1 utilized with 
the product formation case give results which differ some and 
utilization of both forms is desirable because this gives a clear 
indication of the dependence of the estimates on the form of the 
equations. 

The growth curve model is a very general model. It is easily 
applied to estimate yields and maintenance parameters asso- 
ciated with growth and product formation. The techniques 
considered in this article will also be useful to analyze multir- 
esponse data from other contexts. 
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INTRODUCTION 

Aerobic microbial processes as well as other aerobic processes 
such as those associated with animal and human growth and nu- 
trition may be analyzed using available electron and energetic yield 
concepts described by Minkevich and Eroshin (1973), Payne 
(1970), and Erickson et al. (1978). Recently, Erickson and Patel 
(1981,1982) utilized these concepts in an examination of energetic 
yields and efficiencies of a wide variety of growth processes. 

An available electron balance or energy balance based on the 
chemical energy in the organic substrate (food) utilized by the 
growing organism may be written as 

Energy - for biomass Maintenance for product 
Input production energy formation 

Energy allocated Energy allocated 

- + + 

(1) 

Based on the chemical energy in the organic substrate, the energetic 
efficiency of growth is (Erickson, 1979) 

(2) 
energy incorporated in the biomass 

energy allocated for biomass production %ax = 

Similarly, the energetic efficiency of product formation is 

(3) max - energy incorporated into products 
" - energy allocated for product formation 

Another form of the energy balance may also be written. Based on 
the final products, 
Energy - Energy incorporated Energy lost + - 
Input into biomass as heat 

(4) 
Energy incorporated 

into products 
+ 

or dividing by the energy input 

l = q + E + t P  (5) 
where 77 is the biomass energetic yield, E is the fraction of consumed 
energy evolved as heat (or the fraction of available electrons 
transferred to oxygen), and is the product energetic yield. 
Equation 1 may be divided by the energy input and written in the 
form 

1 =?+Em + l€?- 
77max ty 

where em is the fraction of input energy evolved as heat because 
of maintenance. 

The parameters qmax and [y are of considerable commercial 
importance, and thus, they are to be estimated. The quantities 17, 
E and tP may be calculated from appropriate measurements. The 
quantities, p. E ,  and tP depend on growth rate while qmax and [y 
are assumed to be independent of growth rate. In addition to these 
two parameters, a maintenance parameter is also estimated; 
however, the form of parameter depends on the species being 
considered. For microbial growth, where is the specific growth 
rate, Eq. 6 may be written in the form (Erickson, 1979). 

where me = pEm/q is the rate of consumption of energy for 
maintenance per unit of energy in the biomass per hour. In animal 
nutrition studies the maintenance energy requirement has been 
found to depend on the 0.75 power of the mass of the animal (Er- 
ickson and Patel, 1982; Brody, 1945). 

Several variables may be measured in microbial growth pro- 
cesses. Biomass production, product formation, specific growth 
rate, and substrate consumption measurements are required for 
direct evaluation of the quantities q, p,  and tP in Eq. 7. If oxygen 
uptake measurements are also made, the equation (Erickson, 
1979). 

may be used for parameter estimation where oxygen uptake, bio- 
mass production, specific growth rate, and product formation 
measurements are required for the direct calculation of 6/77, p, and 
tP/ 7. When carbon dioxide production measurements are also 
made, the equation (Erickson, 1979) 

may be used for parameter estimation where carbon dioxide pro- 
duction, biomass production, specific growth rate, and product 
formation are required for direct evaluation of d/q, p, and &,/TI.  
In Eq. 9, d is the fraction of substrate carbon which is converted 
to COZ; that is, the microbial growth process may be considered 
to follow a chemical balance equation of the form 

CHmOl + u N H ~  + bOz = ycCHpOnNq + zCH,OSN, 
+ c H ~ O  + dCOz (10) 

where a,  b, yc, z ,  c and d are stoichiometric coefficients, CH,Oi 
denotes the organic substrate, CHpOnNq refers to the elemental 
composition of the biomass, and CH,OsNt denotes the extracellular 
products. In Eq. 9, ys, Y h ,  and y p  are the reductance degrees of 
the substrate, biomass, and products, respectively as defined by 
Minkevich and Eroshin (1973). 

The consistency of the data may be examined using an available 
electron balance which is given in Eq. 5 and a carbon balance based 
on Eq. 10 

yc + z + d = 1.0 (11) 

where yc is fraction of substrate carbon incorporated into biomass, 
z is the fraction utilized in product formation and d is the fraction 
evolved as carbon dioxide. 

In animal nutrition studies, the concept of specific growth rate 
is not widely used and 

(12) 
MeM0.75 

Em = ~ 

where M e  is the maintenance coefficient, M is the mass of the 
animal and QT is the energy in the feed which is metabolized by 
the animal per day. The term m e / p  in Eqs. 7,8, and 9 becomes 

77 ~ Q T  

QT 

5=- (13) 

where ~ Q T  is the rate of gain of the animal in energy units. Some 
results of using these equations for parameter estimation with an- 
imal nutrition data are reported elsewhere by Erickson and Patel 
(1981). For microbial growth without any product formation, the 
available electron balance and the carbon balance of Eqs. 5 and 
11 respectively, reduce to 

q + E = 1  (14) 

y c + d = l  
Note that 

(15) 

Also for this situation, Pirt's (1965,1975) model can be written in 
the forms (Ferrer and Erickson, 1979). 

(16) - ' = L + m e  
77 "man 

Qs =- EL +m,  
Ys max 

0 2  - - +m,  - Yomax 

(19) 
P 

Q C O ~  = - + m D  Y$,x 
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where p, v ,  qmax and me are as previously defined while Qs, Qoz 
and Qco, are respectively the specific rates of organic substrate 
consumption, oxygen consumption and carbon dioxide evaluation, 
Y y ,  YT* and Yy% are true growth yields based on substrate, 
oxygen and carbon dioxide respectively and m,, m, and m~ are 
maintenance coefficients based on substrate, oxygen and carbon 
dioxide respectively. 

Recently, Roels (1983) has presented the development of these 
models from fundamental principles. The validity of the models 
and their individual application in parameter estimation has been 
demonstrated (Pirt, 1975; Roels, 1983; Erickson, 1979; Erickson, 
Minkevich and Eroshin, 1979; Oner, Erickson and Yang, 1983; 
Erickson and Hess, 1981; Solomon, Erickson and Yang, 1983). 

When the growth models presented above are reparameterized, 
models relating the responses with the common parameters can 
be put into a type of multivariate linear model (model with several 
response variables) which is a special case of the general growth 
curve model introduced by Putthoff and Roy (1964). Using Rao’s 
(1965, 1966, 1967) ideas of covariance adjustment and following’ 
Grizzle and Allen (1969), this special type of growth curve model 
can be reduced to a unit variate linear model (model with one re- 
sponse variable), with covariates. Therefore, standard multiple 
regression and residual analysis programs can be used to estimate 
parameters and to test hypotheses concerning the parameters. 

COVARIANCE ADJUSTMENT APPROACH 

Suppose that, in an experimental program, N sets of reaction 
conditions are run, and at each set of conditions p responses 
( ~ 1 ~ 2 , .  . . x p )  are recorded. Suppose furthermore that we can write 
a mathematical model for the ith response at the uth set of reaction 
conditions 

(20) xi, = F l U l U  + F2a2u + . . . + t ra ,  f fiu 

i = l ,  . . .  p u = l ,  . . . ,  N ;  

where ecu is the error in the ith response for the uth run, [ = 
(&, . . . &)’ are the r unknown parameters and uf, (f = 1, . . . ,r) 
are the values of the input variables defining the reaction conditions 
for the uth run. 

We shall assume that the error vectors c,, = (tlu,€zu, . . . ,tpu)‘ 
(u = 1, . . . N )  are independently identically distributed according 
to multivariate normal distribution with zero mean vector and 
unknown covariance matrix 2. 

In matrix notation, we can express Eq. 20 as 

X = 1t’A + E, (21) 
where 

Hence Eq. 21 is a special case of the general growth curve model 
considered by Putthoff and Roy (1964) and applied by Yang et al. 
(1982). Note that for each set of reaction conditions, the expected 

values of the responses, xlu ,xpu, .  . .,xpu, are equal for this 
model. 

The model described by Eq. 20 or 21 may be reduced to a 
standard univariate linear model 

- 
Y.u = Flalu + Fzazu + 4 . .  + tru,  + z u  

by letting 

Y u  = 5 X d P  
i=1  

be the arithmetic average of the uth set of responses. However, to 
efficiently use all the information contained in the responses 
xlu,xpu, ,xPu, appropriately selected covariates, 6, are intro- 
duced. Let Y = X’l(l’l)-l be vector of dimension N and Z = 
(Zl,Zz,  . . . ,&-I) = X’B be an N x ( p  - 1) matrix where B is a p x ( p  
- 1) matrix of rank ( p  - 1) and B’1 = 0. Then, E(Y) = A’[ and 
E(2)  = 0. The expected value of each of the covariates, .Z, is zero 
because the covariates are selected such that their values are zero 
when xiu = xzU = . . . = xP:. This is the expected result for the 
model. Therefore the conditional expectation of Y given Z is 
E(Y(2)  = A‘[ + Za, where a is a vector of ( p  - 1) unknown re- 
gression coefficients. The conditional variance is 

u2 = (1’1)-11‘21(1‘1)-1 - (1‘1)-11‘zB(B’2B)-~B’z 1(1’1)-1 
= (1’2-11)-1 

Now it is clear that the conditional linear model of Yconditional 
on Z is 

Y = A ’ [ + Z a +  e (22) 

where the elements of the residual vector e are independently and 
identically distributed according to a normal distribution with zero 
mean and variance equal to u2. Equation (22) which may also be 
written in the form 

- 
Y.u = 2 tjaju + p21 aiztu + eu 

j=l fSl 

may be used with standard multiple regression methods to estimate 
the parameters t j  and a,. The estimated values of a, from the 
regression analysis determine the weighting associated with each 
covariate, Zf . 

Since E(Z) = 0, the marginal density of Y is independent of [. 
Therefore the maximum likelihood estimate of [ under the con- 
ditional model (Eq. 22) which is also the least squares estimate 
based on Eq. 22 is the maximum likelihood estimate of [ under the 
unconditional model (Eq. 21). Moreover, since the distribution of 
the pivotal quantities for making inferences on under the con- 
ditional model (%. 22) are independent of Z, their conditional and 
unconditional distributions are the same. Hence the statistical in- 
ferences on [ based upon the standard linear model theory under 
the conditional model (Eq. 22) are also valid for the unconditional 
model (Eq. 21). 

The maximum likelihood estimate of 4 can be written as 

= (i/2-ii)-ii/2-1~~/(~~/)-1 (23) 

where the sample covariance matrix, 2 = XI1 - A’(AA’)-’A] 
X’/(N - r ) ,  is a p X p  matrix which is an unbiased estimate of 2. 
Note that the ith row of XA’(AA’)-l is the least squares estimate 
of based on the linear model for the ith response 

xiu = F l U l ,  + Ezazu + . . . + (,aru + €*du = 1, ’ .  . N. 
Hence if we replace 2 by 2, then any linear function A’{ is the 
minimum variance unbiased estimate of A’[ when 2 is known. It 
can also be shown that (Grizzle and Allen 1969, Eq. 8) 

va& = ( A A ’ ) - I ( ~ ~ Z - ~ ~ ) - ~ ( N  - r - I)/(N - r - p) 

An unbiased estimator for Var(g) is 

Vgr([) = (AA’)-~@(N - r - I)/(N - T - p), 

where 62 is the mean square error for fitting the conditional model 
(22). 
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From Eq. 23, we see that f isessentially a weighted least squares 
estimate weighted inversely by the sample covariance matrix 2. 
Rao (1966, 1967) suggested that including only appropriately se- 
lected subsets of 21, . . . ,&:l as covariates in model (Eq. 22) may 
in some cases yield “better estimates than including all the z’s. 
The least squares estimate of 4 based on model (Eq. 22) including 
only a subset of Zl, . . , ,Zp-l is a maximum likelihood estimate 
based on Yand the selected subjset of the 4 ’ s  but it is no longer the 
maximum likelihood estimate based on X. An unbiased estimate 
for the variance of the resulting estimate is given by 

Viir(t) = (AA’)-lC2(N - r - l ) / ( N  - r - q - 1) (24) 

where q is the total number of Z included in model (Eq. 22) and 
h2 is the mean square error for fitting the reduced model (Eq. 
22). 

The measure of “goodness” of the selection may be based on the 
generalized variance of 5, det [Var(Q)]. From Eq. 24, we see that 
V$r(t) depends on the selected Z,’s only through C2 and q. Hence 
a simple measure of “goodness” of the selection is C 2 / ( N  - r - q 
- 1). The selection can be determined by examining the correla- 
tions between Y and Z,(i = 1, . . . , p  - 1). One can also use the 
dominant right hand characteristic vectors (characteristic vectors 
associated with “large” characteristic values) of [ I  - 11’(1’1)-1]2 
as the column of B for generating the covariates 2 for model (Eq. 
22). These ideas will be illustrated in the numerical examples 
considered later. 

Consider Pirt’s (1965, 1975) model discussed earlier; when ni- 
trogen, substrate, oxygen, carbon dioxide and biomass measure- 
ments are available at least four different types of true growth 
yields and maintenance coefficients can be independently esti- 
mated. However using the concept of available electrons and the 
relationships (Erickson et al., 1979; Ferrer and Erickson, 1979) 
between Y y ,  Y y ,  Yy, and qmax and the relationship between 
m,, m,, m D  and me, the true growth yields and maintenance pa- 
rameters are unified and Eqs. 16,17,18 and 19 can be reparame- 
terized to the form 

L = L  + m e  + € 1  (25) 
~ N Z  %ax 

P e(q+c)=---+m, + c3 
77 Vmax 

P 
77 lmax 
-(yc + d ) = L + m e  + c4  

(27) 

where a, and ab  are the fractions of carbon in substrate and bio- 
mass respectively, y, and y b  are the reductance degrees of organic 
substrate and biomass respectively, and €1, €2, €3, and €4 are the 
random errors. The dependent variables p / q ~ ~  and p/q from Eqs. 
25 and 26 respectively are obtained from nitrogen, biomass and 
substrate, and substrate and biomass measurements. The dependent 
variables in Eqs. 27 and 28 involve the available electron balance 
(7 + 6) and the carbon balance (yc + d )  respectively. For consistent 
data the constraints + E = 1 and yc + d = 1 are satisfied and Eqs. 
26,27 and 28 are essentially identical. However since the available 
electron and carbon balances are rarely satisfied, due to mea- 
surement errors, different estimations of qmax and me can be ob- 
tained from the above equations. If the data is statistically adjusted 
such that it satisfies the available electron balance and carbon 
balance constraints then only one estimate to the parameters can 
be obtained from the three equations. However our approach has 
been not to adjust the data to satisfy the constraints but instead to 
use the dependent variables which are related by the available 
electron balance and carbon balance as correlated multiresponse 
observations. 

The columns of the data matrix X of model (Eq. 21) are the N 
observed responses 

The A matrix is 

1 [ l  1 . . . 1  A =  
LPl Pz ‘ . ‘ PNJ 

where gi(i = 1, . . . , N )  are the observed specific growth rates. The 
parameter vector is 

e =  [ I  
For convenience, in almost all cases, we choose B to be a matrix 
with columns which are coefficients of the orthogonal polynomials. 
In this example with four responses 

r-3 1-11 

The covariates are defined as 

2 = (Z,,ZZ,Z,) = X’B. 

lJ4 

y = x ’  [ ‘il 
The corresponding conditional model is 

For the extracellular product formation case, Eqs. 7 , 8  and 9 may 
be rearranged and put into linearized form as follows: 

Again the dependent observations of Eqs. 31 and 32 involve the 
available electron balance and the carbon balance. Also when the 
constraints are satisfied 17 + c + tP = 1 and yc + d + z = 1 and 
Eqs. 30,31 and 32 are identical. When no data adjustment is made, 
this can be treated as a multiresponse observation and the covar- 
iance adjustment technique can be used for estimation of the pa- 
rameters. 

NONLINEAR ESTIMATION PROCEDURES 

Equations 7 , 8  and 9 will be referred to as Form I and used with 
nonlinear parameter estimation methods to obtain estimates of 
qmax, me, and Er. Multiplication of each term in Eqs. 7 , 8  and 9, 
by p gives Form 11: 

(33) 
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Form I and Form I1 correspond to the two different forms 
considered previously in yield studies without products (Pirt, 1965; 
Hempfling and Mainzer, 1975). Because of measurement errors, 
parameter estimates differ for each of these six equations. Equa- 
tions 7 and 33 give different parameter estimates because the forms 
of the two equations differ while Eqs. 7, 8 and 9 give different 
parameter estimates because different experimental data is used. 
Biomass, product, organic substrate, and specific growth rate 
measurements are used with Eq. 7 or 33. Oxygen, biomass, product 
and specific growth rate measurements are used with Eq. 8 or 34. 
Carbon dioxide, biomass, product, and specific growth rate mea- 
surements are used with Eq. 9 or 35. 

Several different methods of nonlinear statistical treatment of 
the data may be employed to obtain point and interval estimates 
of me, qmax, and (Y. Two different methods are employed in this 
work and the results are compared (Oner et al., 1983). 

Nonlinear Method I 

Equations 7-9 and 33-35 can be rearranged in the following 
form: 

where; 

i = 1,2, . . . ,N where N is the number of data points. The values 
of reductance degree ys, yb and yp, are constants for specified 
substrate, biomass and extracellular products, respectively (Er- 
ickson et al., 1978, 1979). The last term in Eqs. 3641, eji, is an error 
term. It can be defined as: 

One can find the estimates of parameters me, qmax and [y by 
using a nonlinear least square technique which is based on mini- 
mizing the quantity (Draper and Smith, 1966). 

N 

i=1  
C [ejiI2 for j = 1,2, . . . ,6 (43) 

Also, it is possible to obtain combined estimates of parameters 
from M of Eqs. 7-9 or 33-35 by minimizing (Hunter, 1967; Ball 
and Groenweghe, 1966). 

M N  

j=1  i=1  
c c (ejfY (44) 

for M equations each with N data points. 
For the case of correlated Yji and Y& # j ' ) ,  Box and Draper 

(1965) have derived a determinant criterion which, when mini- 
mized with respect to the parameters, m,, vmmax, and [? gives 
estimates of these unknown parameters in the multiresponse models 

AlChE Journal (Vol. 30, No. 5) 

(Eqs. 26-38 or 39-41); that is, the determinant of the following 
matrix is minimized. 

In this work, the Hooke and Jeeves Pattern Search Technique 
(1961) was used to estimate parameters by minimizing the above 
determinant. 

For 95% confidence intervals of parameters, the Smooth 
Bootstrap Method was used (Efron, 1979, 1981). 

Basically, N sets of data are generated based on the assumed 
model and the observed data using Monte Carlo simulation tech- 
niques. From the N sets of generated data, N estimates of the pa- 
rameters are obtained. These estimates are arranged in ascending 
order as for example, 

(46) 

Then a 95% confidence interval for qmax is 7&!] where r is 
the integral part of 0.025 N. Of course, the larger the value of N 
the more accurate the estimated interval is. 

A 1  AN 
~ m a x  -< Q L x  5 . . . . . 5 Tmax 

Nonlinear Method II 

As a first step, nonlinear regression was applied to each of the 
Eqs. 36-38 or 39-41 to obtain least squares estimates of errors (&ji) 
by using SAS (1979). 

These estimates of errors were used to estimate the variance 
covariance matrix (2)  as follows: 

where P is the number of parameters to be estimated. 

following quantity: 
Combined point estimates were obtained by minimizing the 

where eji is given by Eq. 42; that is 

Again, the Hooke and Jeeves Pattern Search Technique (1961) was 
used. 

This method is principally weighted least squares based on the 
estimated covariance matrix. The 95% confidence intervals were 
estimated with the same procedure of Method I. 

RESULTS AND DISCUSSION 

The parameters me, vmax, and (y are estimated using the 
methods described above. Only positive values of these parameters 
are physically meaningful. Values of the maintenance coefficient 
are often small, and it is common for the 95% confidence interval 
to include zero. Values of qmax and ,$'r should be less than one; the 
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TABLE 1. ESTIMATES OF TRUE BIOMASS ENERGETIC YIELD AND MAINTENANCE PARAMETER FROM BIOMASS, DILUTION RATE, OXYGEN AND 
SUBSTRATE DATA FOR THE GROWTH OF PARACOCCUS DENITRIFICANS 

Z1 Included 
As a Covariate? 

$2 

N-r-q- 1 
me, hkl 

Point Interval 

0.017 [0.002,0.031] 
0.016 [-0.002,0.033] 

Culture 
Medium PYZl 

Gluconate limited -0.740 
n I, 

Gluconate 
with sulfate 
limitation -0.589 

Succinate 
Y I, 

limited -0.871 
n N 

Succinate 
with sulfate 
limitation -0.436 

M ,I 

Malate 
limited -0.208 

rlmax 
Point Interval References N 

17 
I, 

Yes 
No 

9.026 * 
1.174 * 

0.634 [0.601, 0.6721 
0.605 [0.579,0.633] 

Meijer et al. (1977) 

Meijer et al. 
I, 

(1977) 

,I 

Meijer et a1 
(1977) 

Meijer et a1 
(1977) 

u 

” 
Van Verseveld 

and 
Stouthdmer 

(1976) 

Van Verseveld 
& Stouthamer 

n 

I 

z; = 1-1 11 x 

1.245 * 
2.175 10-5 

1.927 * lop5 
3.517 * 

0.547 [0.509,0.592] 
0.520 [0.480,0.567] 

0.585 [0.531, 0.6521 
0.513 10.479, 0.5521 

0.029 (0.012,0.047] 
0.036 (0.013, 0.0591 

0.036 [0.017,0.056] 
0.037 [O.ooS, 0.0641 

11 
I, 

Yes 
No 

14 
I, 

Yes 
No 

1.131 * 
1.970 * 

3.694 * 

0.464 [0.440, 0.4901 
0.450 (0.442, 0.4821 

0.581 [0.545,0.621] 

0.049 [0.031, 0.0681 
0.066 (0.046, 0.0871 

0.049 [0.024,0.074] 

13 
N 

Yes 
No 

10 Yes 

2.822 * 

2.653 * 
4.046 * 

,I n 

Mannitol 
limited - 739 

I, N 

I, No 

Yes 
No 

0.579 [0.548,0.615] 

0.611 [0.563, 0.6691 
0.567 [0.527, 0.6131 

0.050 [0.027,0.072] 

0.016 [-O.ooS, 0.0391 
0.010 [-0.018,0.038] 

13 
N 

biochemical maximum for vm,, appears to be about 0.88 (Erickson, 
1980). 

The data in Table 1 represents processes with two responses. It 
contains the estimates of the true biomass energetic yield, vmmax and 
maintenance, me obtained using the direct measurement of bio- 
mass and substrate only in Eq. 26 and the values of the available 
electron balance in Eq. 27 for the growth of Paracoccus dentrifi- 
cans on several culture media. The estimates were obtained 
using the covariance adjustment technique. It was observed that 
point and interval estimates obtained when the covariates were 
included were identical to maximum likelihood estimates reported 
in an earlier paper (Solomon et al., 1982). As discussed in the theory 
section the magnitudes of the correlation coefficient (pyz,),  S / ( N  
- r - q - 1) and the interval estimates are to be examined and 
compared. When the value of the correlation coefficient is high, 
inclusion of the covariate may be advantageous. Examination of 
the results in Table 1 shows that when the value of the correlation 

coefficient is large in magnitude, the smallest values of @ / ( N  - 
r - q - 1) are associated with the results where the covariate 21, 
is included. Also the shortest confidence interval for m, is always 
associated with the result which gave the smallest value of &z/ (N 
- r - q - 1). For the malate limited culture, best results are ob- 
tained when the covariate 21, is not included (that is the MLE is 
not the best estimator); this is what one would expect based on both 
the small value of the correlation coefficient and the fact that the 
smaller value of + z / ( N  - r - q - 1) occurs when the covariate is 
not included. 

The regression results are shown graphically in Figures 1 and 
2 for the malate limited culture. The regression line which is shown 
represents both the MLE result and the result without any covar- 
iates (the two curves are so close to each other that only one line is 
shown). In Figure 1, the circles correspond to the lefthand side of 
Eq. 26 which is obtained from biomass and substrate measure- 
ments. Biomass and oxygen measurements are used to obtain the 
values of (v + c)p(/v for Eq. 27 which are shown as squares in 
Figure 1. The regression line is obtained by using the estimated 
values of the parameters me and qmax to calculate 0.7r 0 

(49) 

The residual plot corresponding to Figure 1 is shown in Figure 
2 where Y.t - @.t is the residual. For the MLE case in which a co- 
variate is included, the term involving the covariate, alZli, is added 
to the righthand side of Eq. 49 in calculating the predicted value. 
The distribution of points on the residual plot supports the validity 
of the model. The small differences between the two regression 

p,hF’ 

0.015 

0.010 

- 0005 
E 

= -0.005 
-0.01 0 

-0.0 15 

-0 020 
p .  hr-’ 

Figure 1. Regression lines and data for growth of Paracoccus denitrlficans 
in malate limited continuous culture. Regression lines with covariates and 
without covariates are represented by the same line. Circles represent data 
based on biomass and substrate measurements while squares represent data 

based on biomass and oxygen measurements. 

Figure 2. Residual plot of v.l - 9.1 for Paracoccus denitrificans in malate limited 
culture for data in Figure 1. Circles represent residuals with covariate ad- 

justment while squares are for the case of no covariates. 
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TABLE 2. ESTIMATES OF TRUE BIOMASS ENERGETIC YIELDS AND MAINTENANCE PARAMETERS FROM BIOMASS, SPECIFIC GROWTH RATE, 02, 
coz, GLUCOSE A N D  NITROGEN DATA FOR T H E  GROWTH O F  CANDIDA UTILIS O N  FILTERED A N D  U N F I L T E R E D  GLUCOSE FROM C O R N  DUST 

Covariates 8 2  Tmax me, h-I 
Medium Included N-r-a- 1 Point Interval Point Interval ~. . . . ... 

a - 9.375 * 10-5 0.616 (0.552, 0.6951 
b - 0.557 [0.509, 0.6161 
a 9.848 * 0.616 10.552, 0.6963 
b z 1  0.573 [0.513, 0.6491 

21 

a 8.091 * 0.612 [0.554, 0.6831 
b zz 0.668 10.559, 0.8291 

2 2  

a 1.009 * 10-4 0.622 [0.553,0.712] 
b z3 0.571 f0.500, 0.6671 

2 3  

a 8.414 * 0.610 (0.553, 0.6811 
b ZLZZ 0.693 i0.571, 0.8821 

Z d Z  

a 1.066 * 0.606 f0.532, 0.7041 
b Z l , z 3  0.563 [0.491, 0.6591 

Z1,ZS 

a 27.33 8.773 * 10-5 0.605 [0.543,0.683] 
b 2 2 3 3  0.661 [0.550,0.827] 
a 9.032 * 10-5 0.625 I0.552, 0.720] ZI,Z2,23 

a1 Z* 8.47 * 10-5 0.608 10.550, 0.6791 
b1 z* 8.47 * 10-5 0.683 [0.567,0.859] 

, 

I 

,I 

I 

N 

N 

n 

I [0.564, 1.071 0.739 b z 1 , z 2 3 z 3  

Medium a is filtered glucose; medium b is unfiltered glucose; pVz, = 0.507, p$. = 0.700, p g S  = 0.704, PZ,Z. = 0.823, Pz,zJ = 0.872, pzgs = 0.782 

z = ~Zl,ZZ,Z3i‘ = [‘ 
-1 

Analyzed using the right eigenvector of [ I  - l l ’ ( l ’ l ) - ’ [~ with dominant eigenvalues. 

-0.3096 -0.3420 

0.8083 -0.4623 
..I=[ 

Data of Solomon et al. (1981) N = 15 for medium a; N = 14 for medium b. 

lines are supported by the similarities of the two sets of resid- 
uals. 

Contained in Table 2 are the results of covariance adjustment 
technique for the analysis on the data obtained for the growth of 
Cundidu utilis on filtered and unfiltered glucose obtained by en- 
zymatic hydrolysis of corn dust (Solomon et al., 1981). All of the 
data for medium a (filtered) and medium b (unfiltered) were 
combined to obtain the values of the correlation coefficients and 
3 / ( N  - r - q - 1). In this analysis all nitrogen, biomass, substrate, 
oxygen and carbon dioxide data were used. Thus this is a situation 
with four responses per observation; the available electron and 
carbon balances were used in addition to the direct measure of 
biomass and substrate only and the indirect biomass estimates 
obtained from nitrogen and substrate measurements. The data and 
the consistency of the data have been reported by Solomon et al. 
(1981). 

The results in Table 2 show that the inclusion of covariate Zz 
alone in the model is the best since the value of g 2 / ( N  - r - q - 
1) = 8.091 * is the lowest of all other combinations. However 
looking at the correlation coefficient it can be seen that all of the 
covariates Zl,  Zz, and Zs are highly correlated with Y and are also 
highly correlated with each other. Based on the correlation coef- 
ficients, one would tend to assume that the best model should 
correspond to the results when all the covariates are included; 
however, because the covariates themselves are highly correlated, 
inclusion will not be advantageous since the information in just one 
or two could be as good as that obtained from all. Examination of 
Table 2 shows that the selection of the best estimate could become 
very cumbersome as the number of covariates increase; this is be- 
cause the number of combinations increase very rapidly with 
number of responses. For example, with two responses, we have two 
alternatives; with three responses, there are four alternatives; while 
with four responses, eight different alternatives need to be explored. 
Instead of going through this boring process of examining various 
combinations, a more efficient method discussed in the theory is 
also tried. The three nonzero characteristic values of [I - ll’(1’- 
1)-1]2 are (0.4096, 0.0777, 0.0651). The corresponding charac- 
teristic vectors are respectively (-0.3096, -0.3420, -0.2103, 
0.8619),(0.8083, -0.4623, -0.3641,0.0181), and (0.0275,0.6475, 

-1 -1 1 x 
3 -3 I 

-0.2103 0.86191 

-0.3641 0.0180 

0.045 
0.004 
0.044 
0.017 
0.034 
0.098 
0.046 
0.008 
0.030 
0.119 
0.043 
0.019 
0.032 
0.102 
0.031 
0.128 
0.030 
0.115 

1-0.033,0.123] 
(-0.080,0.088] 
[-0.034,0.123] 
1-0.072, 0.1061 
1-0.038, 0.1061 
[-0.0108, 0.2061 
[-0.034, 0.126] 
[-0.079,0.095] 
(-0.043,0.102] 
(-0.003,0.235] 
1-0.038, 0.1231 
[-0.072, 0.111) 
(-0.042,0.105] 
[-0.010, 0.2141 
[ -0.043,O. 1041 
(0.007,0.249] 
[-0.043,O. 1031 
[0.00003,0.231] 

-0.7571, 0.0821). The two characteristic vectors corresponding 
to the two dominant characteristic values are chosen as the two 
columns of B .  The results obtained are very similar to those ob- 
tained including only Zz as covariate. In fact, the “dominant 
characteristic vectors” method gives shorter confidence intervals 
for qmax and me for growth on filtered glucose (Table 2). 

Figures 3,4, and 5 graphically illustrate some of the results re- 
ported in Table 2. Figure 3 shows the regression lines for the case 
where the hydrolyzed corn dust is filtered prior to using the filtrate 
as substrate. As shown in Figure 3 the regression line when no co- 
variates are used (solid line) and the regression line with the co- 
variate Z* (dashed line) differ sufficiently that two separate lines 

+ 

<Y 

I I I I I 8 I 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
J 

p,hr-’ 

Figure 3. Regression results for Equation (29) and data for growth of Candkla 
ufMs on flltered glucose from corn dust. Lines correspond to Table 2 results 
for no covariates (solid line) and covariate 2’ (dashed line). Clrcies corre- 
spond to substrate and biomass data; squares correspond to oxy$en and 
biomass data; triangles correspond to COP and biomass data; plus signs 

correspond to nitrogen, substrate, and biomass data. 
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Figure 4. Residual plot of ji,, - 9.) for Candida utills for data shown in Figure 
3. Circles represent residuals with covariate adjustment while squares are 

for the case of no covariates. 

may be drawn. In each case the parameter estimates are used with 
Eq. 49 to draw the regression lines. The ordinate associated with 
the data is the left hand side of Eq. 25 for the plus signs, Eq. 26 for 
the circles, Eq. 27 for the squares and Eq. 28 for the triangles. 

Figure 4 shows the residuals (Fi - 6,)  for the results in Figure 
3. For the case in which covariates are included, Eq. 29, with the 
estimated values of the parameters, is used to calculate that is, 
the terms involving the covariates are included in the right hand 
side. The points on the residual plot appear to be nearly randomly 
distributed. The magnitude of the residuals with and without co- 
variates is similar in a number of cases. 

Figure 5 shows the regression line and data for growth on me- 
dium b in which the residual solids are not filtered out. The solid 
line for the case in which no covariates are used in parameter es- 
timation has a larger slope than the two dashed lines in which co- 
variate adjustment was used. This is because the relatively scattered 
nitrogen data is weighted more heavily when no covariates are 
included than it is when covariate adjustment is used. 

In Figures 3 and 5, it is clear that additional data at low specific 
growth rates would be desirable. This is difficult to obtain in batch 
culture, but batch culture followed by fed batch culture may be 
used to enhance data collection at low specific growth rates (Sol- 
omon et al., 1983). 

Tables 3 and 4 compare the point and interval estimates obtained 
by different estimation procedures for the true biomass energetic 
yield and maintenance coefficient for Candida utilis growth on 
filtered glucose. In Table 3, estimates were obtained using direct 
biomass and substrate measurements, available electron balance 
and carbon balance; thus there are three responses for each ob- 
servation. The point and interval estimates for both qma, and me 
are quite similar for the methods. In Table 4, estimates were ob- 
tained using the nitrogen measurement in addition to the data used 
in Table 3. The estimates obtained for qmax and me are quite similar 
in the two cases when the linear estimation procedures, covariance 
adjustment and MLE were applied. However, due to the increment 
in the number of responses, the size of the matrix whose determi- 
nant is to be minimized by Hooke and Jeeves search technique 
increases; thus, the estimates obtained, when the nonlinear pro- 
cedures were used, were quite sensitive to the step sizes and starting 
points and also required a lot of computing time. This is explained 
in terms of the presence of several local minimum as the number 
of responses increase. 

Tables 5 and 6 compare the estimates obtained using the esti- 
mation procedures for growth on unfiltered glucose. Due to the 
presence of unhydrolysed corn dust residues the measurement of 
biomass was difficult and thus the data was inconsistent (Solomon 
et al., 1981). The estimates of qmax and me in Table 6 using the 
covariance adjustment technique appear to be substantially im- 
proved when the nitrogen data is included. The values of q,,, = 
0.683 and me = 0.098 h-I are very reasonable and the 95% confi- 
dence intervals of [0.567,0.859] for qmax and [O.OO, 0.2311 for me 
are such that one would reasonably expect these intervals to include 
the actual values of the parameters. These values are considerably 

<i 
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Figure 5. Regression results for Equation (29) and data for growth of CandMe 
utik on unfiltered glucose from corn dust. Lines correspond to Table 2 results 
with no covariates (solid line), Covariate 2' (dashed line), and 2, (long and 

short dashes). Data symbols as in Figure 3. 

better than the estimates obtained previously by Solomon et al. 
(1981). Due to the inconsistency none of the methods could yield 
a very good result in Table 5. In Table 6, the nonlinear methods 
again had their problems due to the large number of responses at 
each observation. 

Table 7 contains the estimate of true biomass energetic yield, 
qmax, true product yield ly and the maintenance coefficients me, 
for a growth process with product formation (Erickson and Hess, 
1981). In this case the microorganism Rhizobium trifolii produced 
polysaccharide in a chemostat culture. The results in Table 7 show 
that the point estimates of the true biomass energetic yield, qmax, 
are very consistent for nonlinear methods I and I1 and the covar- 
iance adjustment technique for Form I and Form 11, but that the 
estimates for Form I are larger than those for Form 11. The interval 
estimates for q,,, differ considerably; nonlinear method I1 gives 
the shortest interval for Form I while nonlinear method I gives the 
shortest interval for Form 11. These two intervals are similar. The 
covariance adjustment procedure gives the largest 95% confidence 
intervals. Note that in this analysis Eqs. 7,8,30,31,33 and 34 are 
used; the carbon dioxide data in the carbon balance needed for Eqs. 
9,32 and 35 is not available. Thus, there are only two responses. 

The point estimates for the true product energetic yield tp are 
very similar in Table 7 for nonlinear methods I and I1 and covar- 
iance adjustment technique for both Forms I and 11. The interval 
estimates include an interval which exceeds the maximum theo- 
retical value of 0.93 (Erickson and Hess, 1981) except for FormZ, 
nonlinear method 11. The interval of interest is from the lower limit 
to 0.93. The shortest interval 0.61 I ty 5 0.89 from Form I, 
nonlinear method 11 appears to be a realistic interval. 

The point estimates for the maintenance coefficient, me, are all 
relatively small for all the methods and both forms. All of the in- 
terval estimates include an interval where me is negative; however, 
this can be removed because me must be positive based on ther- 
modynamic considerations. The interval estimates show that m,. 
is small for this organism. 

The nonlinear estimation methods utilize the Bootstrap method 
which does not require any distributional assumptions with regard 
to the model of the data in constructing the confidence interval 
Because of the simulation approach which is used to obtain the 
confidence intervals the interval may deviate slightly from a 95% 
confidence interval. The accuracy of the interval depends on the 
number of simulations which might require a lot of computer time. 
To use the covariance adjustment method, the equations need to 
be linearized; this linearization of the equations may affect the 
estimator. 

When only two or three responses are observed, the nonlinear 
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TABLE 3. ESTIMATES OF TRUE BIOMASS ENERGETIC YIELD AND MAINTENANCE COEFFICIENTS FROM BIOMASS, 0 2 ,  C o z  AND GLUCOSE 
MEASUREMENT FOR THE GROWTH OF CANDIDA UTILIS ON FILTERED GLUCOSE FROM CORN DUST 

llrnax me, h-I 
Method of Analysis Point Interval Point Interval 

Cov. Adjustment 0.615 
MLE 0.643 
Nonlin. Method I 0.657 
Nonlin. Method I1 0.643 

[0.559, 0.6821 
I0.574, 0.7311 
[0.625, 0.7061 
(0.580, 0.7171 

0.020 [-0.047,0.086] 
0.028 [-0.038,0.094] 
0.027 [-0.010,0.073] 
0.026 [0.020, 0.0351 

Dataof Solom& et al. (1981). N = 15. 

TABLE 4. ESTIMATES OF TRUE BIOMASS ENERGETIC YIELDS AND MAINTENANCE COEFFICIENTS FROM BIOMASS, 0 2 ,  Coz, NITROGEN AND 
GLUCOSE MEASUREMENT FOR THE GROWTH OF CANDIDA UTZLIS ON FILTERED GLUCOSE FROM CORN DUST 

llmax me, h-I 
Method of Analysis Point Interval Point Interval 

Cov. Adjustment 0.608 [0.550,0.679] 0.030 [-0.043,0.103] 
MLE 0.625 [0.553,0.720] 0.031 [-0.047,0.104] 
Nonlin. Method I 0.578 [0.500,0.670] 0.059 [0.041, 0.0621 
Nonlin. Method I1 0.589 [.554, 0.6101 0.060 [0.053,0.067] 

Data of Solomon et al. (1981). N = 15. 

TABLE 5. ESTIMATES OF TRUE BIOMASS ENERGETIC YIELD AND MAINTENANCE COEFFICIENTS FROM BIOMASS, 0 2 ,  c 0 z  AND GLUCOSE 
MEASUREMENT FOR THE GROWTH OF CANDIDA UTILZS ON UNFILTERED GLUCOSE FROM CORN DUST 

Method of Analysis 
max 

Point Interval 
me, h-’ 

Point Interval 

Cov. Adjustment 0.842 
MLE 0.869 
Nonlin. Method I 0.726 
Nonlin. Method I1 0.754 

[0.692, 1.081 
[0.711, 1.121 
(0.690, 0.7501 
[0.710,0.780] 

0.184 [0.083,0.286] 
0.166 [0.063,0.269] 
0.155 [0.103, ,2781 
0.144 [.119, ,2591 

Data of Solomon et a1 (1981) N = 14. 

TABLE 6. ESTIMATES OF TRUE BIOMASS ENERGETIC YIELD AND MAINTENANCE COEFFICIENT FROM BIOMASS, 0 2 ,  c o z ,  NITROGEN AND 
GLUCOSE MEASUREMENT FOR THE GROWTH OF CANDIDA UTILIS O N  UNFILTERED GLUCOSE FROM CORN DUST 

llmax me, h-I 
Method of Analvsis Point Interval Point Interval 

Cov. Adjustment 0.683 
MLE 0.734 
Nonlin. Method I 0.815 
Nonlin. Method I1 0.921 

[0.567, 0.8591 
[0.564, 1.071 
[0.749,0.955] 
[0.855, 1.051 

~~ 

0.115 lO.00, 0.2311 
0.128 [0.007, 0.2491 
0.019 [0.004, 0.0261 
0.098 [0.085,0.104] 

Data of Solomon et a]. (1981). N = 14. 

TABLE 7. POINT AND INTERVAL ESTIMATES OF TRUE ENERGETIC YIELD PARAMETERS OF CHEMOSTAT CULTURES OF RIZOBIUM TRZFOLII* 

max me, h-I llmax 0 

Point Interval Point Interval Point Interval 

Equations are in Form I 
N. Lin. Regression of Eq. 7 
N. Lin. Regression of Eq. 8 
N. Lin. Method 1 
N. Lin. Method I1 
Cov. Adjustment 
Equations are in Form I1 
N. Lin. Regression of Eq. 33 
N. Lin. Regression of Eq. 34 
N. Lin. Method I 
N. Lin. Method I1 
Cov. Adjustment 

0.02355 
0.00809 
0.00715 
0.00665 
0.00658 

0.00989 
0.00410 
0.00409 
0.00401 
0.00382 

- 
- 

[-0.00335, 0.01715] 
[-0.00093,0.01425] 
[ -0.01322,0.02637] 

- 

- 

[-0.00670,0.01329] 
[-0.00514,0.01375] 
[-0.02017,0.02782] 

0.89966 
0.64943 
0.63849 
0.63306 
0.63220 

0.70756 
0.59963 
0.59789 
0.59709 
0.59529 

- 
- 

[ 0.45705,O. 803051 
[0.52832,0.68386] 
[0.47382,0.94986] 

- 

[0.53422,0.68911] 
[0.52428, 0.703531 
[0.44524,0.89793] 

0.45 138 
0.73500 
0.77 195 
0.78166 
0.78315 

0.51924 
0.83510 
0.85395 
0.85571 
0.86011 

- 

[0.52394, 1.121681 
[0.61453,0.89365] 
(0.50885, 1.699001 

- 
[ 0.68143, 1.108711 
I0.67555, 1.145261 
[0.53638,2.16943] 

* Data of de Hollander et al. (1979). N = 11. 
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methods are quite appropriate as convergence is usually quick, 
however, as the number of responses increase, the covariance ad-. 
justment procedure is definitely preferred since it is very easy to 
use. The results from covariance adjustment may also be used as 
a starting point with the nonlinear methods. 

From Table 7, independent estimates of the parameters by 
nonlinear regression of equations (Eqs. 7, 8 ,33  and 34) show the 
need to simultaneously use all the information available. The use 
of the available electron and carbon balances in addition to the 
direct measurement of biomass and substrate data and when 
available nitrogen data, allow better point and interval estimates 
to be obtained. 

Additional applications of the covariate adjustment approach 
are reported elsewhere, and an example is worked in considerable 
detail (Solomon et al., 1983). 
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NOTATION 

A 

B 

d 

E 
el* 
m 

= p X N  matrix of known coefficients and input variables 

= p X ( p  - 1) matrix of rank ( p  - 1) chosen such that 

= moles of carbon dioxide per g atom carbon of organic 

= p X N  error matrix in Eq. 21 
= element of error matrix 
= maintenance coefficient; me is g equivalent of available 

electrons of substrate consumed per g equivalent of 

in model (Eq. 21) 

B’l = 0 

substrate, gmol/g atom carbon 

M L E  
N 
P 
P 
Q C O ~  

Qoz 

QS 

4 
r 
X 
Y 
Y 

Y.f 
y.1 

biomass per hour 
= maximum likelihood estimate 
= number of observations 
= number of parameters, Eq. 47 
= number of observed responses in Eq. 21 
= specific rate of evolution of carbon dioxide, gmol/g dry 

= specific rate of oxygen consumption, gmol/g dry wt. 

= specific rate of organic substrate consumption, g/g bio- 

= number of covariates employed 
= number of parameters in Eq. 20 
= p X N  response matrix 
= biomass yield 
= response vector of dimension N 
= mean of p responses for the ith set of responses 
= predicted value of response based on parameter esti- 

wt. (h) 

(h) 

mass (h) 

mates 
yc 

2 

z 

= biomass yield based on carbon, g biomass carbon per g 

= covariate matrix of dimension N X q  where q = p - 1 

= fraction of substrate carbon incorporated into products 

substrate carbon 

when all covariates are included 

Greek Letters 

a, 
y 

= parameters associated with covariates 
= reductance degree; y b  is equivalents of available electrons 

of biomass per g atom carbon of biomass; T b  = 4 + p - 
2n - 39 based on formula for biomass in Eq. 10 and the 
valences C = 4, H = 1,0 = -2, and N = -3 

E 

flu 
77 

= fraction of available electrons transferred to oxygen 
= element in error matrix 
= fraction of available electrons transferred to biomass; 

biomass energetic yield 

vmax = true growth yield 
p 
[ 
Ep 
.$? = true product yield 
p = correlation coefficient 
c = mass fraction carbon 
o2 
22 

= specific growth rate, h-l 
= parameter vector in Eq. 21 
= fraction of available electrons incorporated into products; 

product energetic yield 

= conditional variance associated with Eq. 22 
= mean square error of conditional model 

Subscripts 

b =biomass 
D = carbon dioxide 
e = available electron basis 
M = number of responses 
N2 = nitrogen 
0 2  =oxygen 
0 = oxygen 
p 
S = substrate 

= product; number of responses 
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Mass Transfer in AC Electrolysis 

Part I: Theoretical Analysis Using a Film Model for Sinusoidal Current on 
a Rotating Hemispherical Electrode 

A film model is presented for the analysis of mass transfer to a rotating hemi- 
spherical electrode when sinusoidal alternating current (AC) together with direct 
current (DC) are flowing across the electrode surface. The concentration of a dif- 
fusing ion is separated into two independent components: a constant DC compo- 
nent and a periodic AC component. The DC concentration is obtained by solving 
the steady-state convective mass transport equation with the perturbation method. 
The periodic AC concentration distribution is analyzed by the solution to the 
onedimensional transient diffusion equation based on the concept of Nernst dif- 
fusion layer. The limiting AC current densities corresponding to a zero surface 
concentration of a reactive ion are investigated for various DC current densities 
and AC frequencies. The resulting periodic concentration overpotential wave and 
its phase shift with respect to the applied AC are examined. A comparison with 
a previous rigorous, model indicates that the film model is a good approximation 
to the mass transfer calculation in the regimes of a dimensionless AC frequency 
K = (w/Q)SC’/~ greater than 2 and less than 0.01. 

C. Y. CHENG and D-T. CHIN 
Department of Chemical Engineering 

Clarkson University 
Potsdam, NY 13676 

SCOPE 

Electrolysis with a direct current superimposed with a peri- 
odically alternating current component has been long used in 
pulse plating, in electrodissolution to increase anode corrosion, 
in AC anodizing to improve color and dye penetration, and in 
the AC corrosion processes (Venkatesh, 1979). AC can enhance 
the kinetics of electrochemical reactions, change the morphol- 
ogy of electrodeposits, and cause the pitting corrosion of passive 

metals. AC also improves the mass transfer rate by producing 
a pulsating concentration boundary layer of reactive ions near 
the electrode surface, and a very large AC of an order of 10-100 
times greater than the DC-limitng current density can be used 
for electrolysis without affecting the coulombic efficiency of 
the electrode reaction. 

This work examines the mass transfer to a rotating hemi- 
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